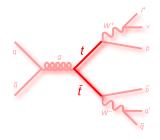
Latest theory developments for top pair production, generators and showering

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

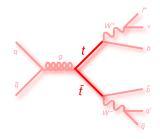

TOP 2015 Ischia, 15 September 2015

plan of the talk

- 1. total & differential cross sections
 - fixed-order
 - resummation and approximate higher-orders

2. event generators

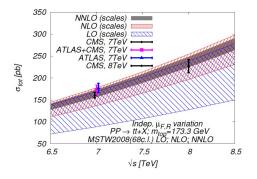
- top-decays, offshellness and interference effects
- $t\bar{t} + X$ and NLO+PS merging
- 3. conclusions



plan of the talk

- 1. total & differential cross sections
 - fixed-order
 - resummation and approximate higher-orders

2. event generators


- top-decays, offshellness and interference effects
- $t\bar{t} + X$ and NLO+PS merging
- 3. conclusions

- e^+e^- not discussed
- electroweak corrections and more on $t\bar{t}+X$ as well as on differential distributions on Thursday
- surely I've missed something apologies for omissions

At fixed order, state of the art is NNLO

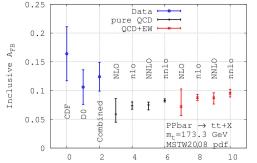
[Baernreuther,Czakon,Fiedler,Heymes,Mitov '12-] [talk by Heymes on Thursday]

good perturbative convergence

figure from M. Czakon

At fixed order, state of the art is NNLO

[Baernreuther,Czakon,Fiedler,Heymes,Mitov '12-] [talk by Heymes on Thursday]

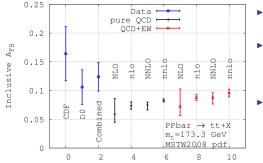

Collider	$\sigma_{\rm tot} ~[{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

good perturbative convergence

► matching to NNLL resummation improves (scale) uncertainty: 5% → 3%

At fixed order, state of the art is NNLO

[Baernreuther,Czakon,Fiedler,Heymes,Mitov '12-] [talk by Heymes on Thursday]



- good perturbative convergence
- ► matching to NNLL resummation improves (scale) uncertainty: 5% → 3%

 improves on Tevatron A_{FB} asymmetry

At fixed order, state of the art is NNLO

[Baernreuther,Czakon,Fiedler,Heymes,Mitov '12-] [talk by Heymes on Thursday]

- good perturbative convergence
- ► matching to NNLL resummation improves (scale) uncertainty: 5% → 3%
- improves on Tevatron A_{FB} asymmetry

Other groups working on NNLO corrections: [Abelof,Gehrmann-De Ridder, et al], [Catani,Grazzini, et al]

- ► recent progress on *q*_T-subtraction for colored final state:
 - small- $p_{T,t\bar{t}}$ structure now known
 - fully differential NLO reproduced, steps towards NNLO

[[]Bonciani,Catani,Grazzini,Sargsyan,Torre '14-'15]

Phigher-order log-ennhanced terms can be computed, and resummed

- match with fixed order (or use them to guess unknown next order)
- argument of log \leftrightarrow distance wrt LO kinematics

 $\beta = \sqrt{1 - 4m^2/\hat{s}} \qquad \mathsf{PIM}\; [(1 - z) = 1 - M_{t\bar{t}}^2/\hat{s}] \qquad \mathsf{1PI}\; [s_4/m^2, s_4 = (p_{\bar{t}} + p_X)^2 - m^2]$

mer higher-order log-ennhanced terms can be computed, and resummed

- match with fixed order (or use them to guess unknown next order)
- argument of log \leftrightarrow distance wrt LO kinematics

 $\beta = \sqrt{1 - 4m^2/\hat{s}} \quad \text{ PIM } \left[(1 - z) = 1 - M_{t\bar{t}}^2/\hat{s} \right] \quad \text{ 1PI } \left[s_4/m^2, s_4 = (p_{\bar{t}} + p_X)^2 - m^2 \right]$

fully inclusive

- $\blacktriangleright \text{ NNLL threshold logs: } \alpha^n_{\mathrm{S}} \log^m \beta \qquad \texttt{[Czakon,Mitov,Sterman],[Beneke,Falgari,Schwinn, et al],[Cacciari et al]}$
- public codes:

TOP++ [NNLO+soft], TOPiXS [NNLO+soft+Coulomb], HATHOR [NNLO]

approximate N³LO (soft & high-energy logs)

[Muselli,Bonvini, et al '15]

Phigher-order log-ennhanced terms can be computed, and resummed

- match with fixed order (or use them to guess unknown next order)
- argument of log \leftrightarrow distance wrt LO kinematics

 $\beta = \sqrt{1 - 4m^2/\hat{s}} \qquad \mathsf{PIM} \; \left[(1 - z) = 1 - M_{t\bar{t}}^2/\hat{s} \right] \qquad \mathsf{1PI} \; \left[s_4/m^2, s_4 = \left(p_{\bar{t}} + p_X \right)^2 - m^2 \right]$

fully inclusive

- $\blacktriangleright \text{ NNLL threshold logs: } \alpha_{\rm S}^n \log^m \beta \qquad \hbox{[Czakon,Mitov,Sterman],[Beneke,Falgari,Schwinn, et al],[Cacciari et al]}$
- public codes: TOP++ [NNLO+soft], TOPiXS [NNLO+soft+Coulomb], HATHOR [NNLO]
- approximate N³LO (soft & high-energy logs)

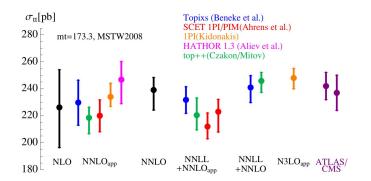
differential

- 1PI and PIM NNLL threshold (NLO matched)
- being extended also to boosted top regime
- 1PI and PIM approximate NNLO, with decays at NLO
- 1PI approximate NNLO public code: DiffTOP
- 1PI approximate N³LO

[Ahrens,Ferroglia,Neubert,Pecjak,Yang]

[talk by Pecjak on Thursday]

[Muselli,Bonvini, et al '15]

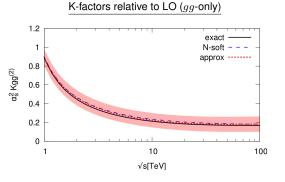

[Broggio, Papanastasiou, Signer, '14]

[Guzzi,Lipka,Moch, '14]

[Kidonakis, '15]

how do they compare?

figure from C. Schwinn

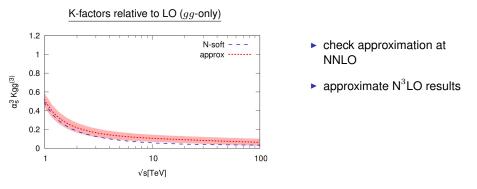


information from exact NNLO clearly relevant

combine soft and high-energy resummation

[Muselli,Bonvini,Forte,Marzani,Ridolfi '15]

in Mellin space:
$$C_{approx}(N) = C_{soft}(N) + C_{h.e.}(N)$$



 check approximation at NNLO

combine soft and high-energy resummation

[Muselli,Bonvini,Forte,Marzani,Ridolfi '15]

in Mellin space:
$$C_{approx}(N) = C_{soft}(N) + C_{h.e.}(N)$$

combine soft and high-energy resummation

[Muselli,Bonvini,Forte,Marzani,Ridolfi '15]

in Mellin space: $C_{approx}(N) = C_{soft}(N) + C_{h.e.}(N)$

K-factors relative to LO (gg-only)

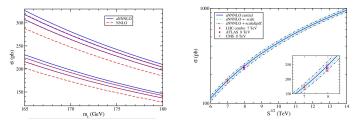
		$\alpha_s(m^2)K_{gg}^{(1)}$	$\alpha_s^2(m^2) K_{gg}^{(2)}$	$\alpha_s^3(m^2)K_{gg}^{(3)}$
13 TeV	exact		0.199	
	approx	0.569 ± 0.125	0.209 ± 0.077	0.083 ± 0.036
	N-soft	0.619	0.221	0.040

- check approximation at NNLO
- approximate N³LO results

combine soft and high-energy resummation

[Muselli,Bonvini,Forte,Marzani,Ridolfi '15]

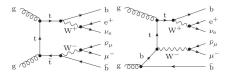
ol on provine


in Mellin space: $C_{approx}(N) = C_{soft}(N) + C_{h.e.}(N)$

K-factors relative to LO (gg-only)

		$\left \alpha_s(m^2) K_{gg}^{(1)} \right $	$\alpha_s^2(m^2) K_{gg}^{(2)}$	$\alpha_s^3(m^2) K_{gg}^{(3)}$	NNLO
\geq	exact	0.555	0.199		-
			0.209 ± 0.077	0.083 ± 0.036	approximate N ³ LO results
	N-soft	0.619	0.221	0.040	

approximate N³LO results expanding 1PI threshold logs



fully-differential pair-production with decays

- state of the art: $pp \to W^+(\ell\nu)W^-(\ell\nu)b\bar{b}$
 - QCD NLO in prod and decay, narrow-width approximation
 - fully exclusive NLO, massless b-quarks
 - fully exclusive NLO, massive b-quarks

\star important spinoff: $t\bar{t}$ vs. tW:

the inclusion of decays, with massive *b*-quarks, allows also an unambiguos definition of $t\bar{t}$ vs. tW:

- " $t\bar{t}$ " $\rightarrow WWbb$: 2 resolved *b*-jets
- "Wt" \rightarrow WWb: at least one resolved *b*-jet
- arbitary cuts on the other objects

 until very recently, top quarks treated as stable in NLO+PS event generators: decay products generated a-posteriori, retaining tree-level angular correlations

[method by Frixione,Laenen,Motylinski,Webber, now also automated in MadSpin]

[Bernreuther et al],[Melnikov,Schulze],[Campbell,Ellis]

[Denner et al],[Bevilacqua et al],[Heinrich et al]

[Frederix '13],[Cascioli,Kallweit, et al '13]

2. tools & MC generators

status and recent developments

Two most important developments in the last couple of years:

- 1. (towards) fully-consistent <u>NLO+PS simulation of *WWbb*</u>, with exact decays at NLO and offshellness effects
 - ► improvement on m_t measure likely to come from combination of different strategies: total x-section, tt̄ + jet, leptonic spectra, bℓ endpoint,... [talk by Corcella on Wednesday]

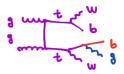
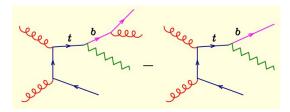


figure from R. Franceschini


- some techniques rely on looking into the kinematics of visible particles from top-decay
- important that simulations are as accurate as possible, and associated uncertainties are quantified

2. simulation of $t\bar{t} + X$ and NLO+PS multijet merging

- backgrounds to "all" BSM direct searches
- relevant to indirectly probe BSM effects, e.g. Higgs couplings and $t\bar{t}H$

WWbb at NLO+PS

- to understand the origin of issues, let's first consider NLO (no shower):
 - when computing WWbb at NLO, current subtraction schemes (FKS, CS) don't preserve top virtuality between real emission terms and their counterterms

- when bgW is on-shell, the counterterm goes off-shell:
 - top virtuality displaced by amount m_{bq}^2/E_b
 - subtraction works until $m_{bg}^2/E_b \approx \Gamma_t$
 - in the strict narrow-width limit, IR cancellation spoiled
- the above statement means that approaching the zero-width limit from an off-shell computation should fail. However, the top-quark width is "not so small", and indeed NLO computations for WWbb were completed succesfully, both in 5- and 4-flavour scheme

WWbb at NLO+PS

- at NLO+PS, things get more serious:

$$d\sigma = d\Phi_{\rm rad}\bar{B}(\Phi_B)\frac{R(\Phi_B, \Phi_{\rm rad})}{B(\Phi_B)}\exp\left[-\int \frac{R(\Phi_B, \Phi_{\rm rad})}{B(\Phi_B)}d\Phi_{\rm rad}\right]$$

- ▶ because virtuality is not preserved, \bar{B}/B is suppressed or ennhanced, if (Φ_B, Φ_{rad}) or Φ_B are off-shell, respectively.
- these effects don't mutually compensate, because if Φ_B is off-shell, the Sudakov factor always yield large suppression (the converse is true only if m²_{ba} is small).
- expect distorsion of *b*-jet mass when $m^2/E \approx \Gamma_t$, *i.e.* $m_j \simeq 8 \text{ GeV}$
- a POWHEG implementation for the full WWbb computation exists [Garzelli,Kardos,Trocsanyi '14]. It'll be interesting to investigate further.

In the meanwhile, POWHEG-BOX was improved: now it can deal with radiation in resonance decays, in the zero-width limit, in a fully general way. First step towards exact WWbb at NLO+PS...

towards WWbb at NLO+PS

[Campbell,Ellis,Nason,ER '14]

[1]

[1]

In a nutshell:

- ▶ in narrow-width limit, NLO corrections in production and decay decouple
 - real corrections can be separated between production and decay (for each resonance)
 - similar for virtual corrections
- \blacktriangleright if radiation comes from resonance, Φ_B constructed in the resonance frame, so that top-virtuality is preserved
- finite-width effects included approximately, by rescaling with exact LO matrix elements
 - generic (offshell) phase-space + projection onto on-shell zero-width phase-space
 - reweighting using LO exact results (finite width, non-double-resonant diagrams,...)
- "multiplicative POWHEG": keep multiple emissions before showering
 - by default POWHEG is additive: keeps only the hardest emission.
 - for heavy-pair production and decay, emissions from decay are rarely the hardest. Hence, with default POWHEG, they would be dealt with by the shower.
 - keep hard radiation and the emissions from all decaying resonances, then merge them into a single radiation phase space with several radiated partons, up to one for each resonance.

towards WWbb at NLO+PS

[Campbell,Ellis,Nason,ER '14]

[1]

[1]


In a nutshell:

- ▶ in narrow-width limit, NLO corrections in production and decay decouple
 - real corrections can be separated between production and decay (for each resonance)
 - similar for virtual corrections
- \blacktriangleright if radiation comes from resonance, Φ_B constructed in the resonance frame, so that top-virtuality is preserved
- finite-width effects included approximately, by rescaling with exact LO matrix elements
 - generic (offshell) phase-space + projection onto on-shell zero-width phase-space
 - reweighting using LO exact results (finite width, non-double-resonant diagrams,...)
- "multiplicative POWHEG": keep multiple emissions before showering
 - by default POWHEG is additive: keeps only the hardest emission.
 - for heavy-pair production and decay, emissions from decay are rarely the hardest. Hence, with default POWHEG, they would be dealt with by the shower.
 - keep hard radiation and the emissions from all decaying resonances, then merge them into a single radiation phase space with several radiated partons, up to one for each resonance.
- Work is in progress to generalize this approach, in order to allow the inclusion of all diagrams, with no approximations. This required further changes in the POWHEG-BOX code; currently being tested in the *t*-channel single-top case [Jezo,Nason]

towards WWbb at NLO+PS: results

[Campbell,Ellis,Nason,ER '14]

 code for NLO+PS in production and NLO+PS in decays is available, with approximate off-shellness effects

- left: 5% effects on $m_{\ell j_b}$ end-point distribution.
- right: fragmentation function ($x = E_B/E_{B,max}$)
- can be used as a tool to study, with a fully realistic simulation, recently proposed methods to extract m_t

For this type of processes, NLO+PS has now become standard due to the high-level of automation reached in the QCD NLO community

- MadGraph5_aMC@NLO [Alwall,Frederix,Frixione,Hirschi,Maltoni,Mattelaer,Shao,Stelzer,Torrielli,Zaro] all relevant process involving a tt pair produced in association with extra light or heavy objects can now be simulated at NLO+PS accuracy, in a fully-automated way.
- Within the POWHEG method, several studies have been performed too, mostly with PowHel [Garzelli,Kardos,Trocsanyi]
 - $\blacktriangleright \ t\bar{t}+j \ , \ t\bar{t}b\bar{b} \ , \ t\bar{t}V \ , \ t\bar{t}H \ ...$
- Progress also in Sherpa-MC@NLO

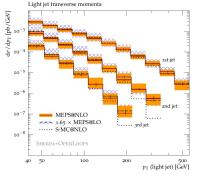
[Hoeche,Krauss,Schoenherr,Siegert]

▶ $t\bar{t}b\bar{b}$, $t\bar{t}+\leq 2$ jets [using <code>openLoops</code>] easy to simulate other processes linking to 1-loop codes

NLO+PS merging

- significant fraction of interesting final states is accompanied by one (or more) jets
- sometime a single tool describing several jet multiplicities at the same time is needed
- CKKW-L and MLM-merging methods succesfully address this issue <u>at LO</u>: this accuracy will become a limiting factor for precision studies

NLO+PS merging


- significant fraction of interesting final states is accompanied by one (or more) jets
- ► sometime a single tool describing several jet multiplicities at the same time is needed
- CKKW-L and MLM-merging methods succesfully address this issue <u>at LO</u>: this accuracy will become a limiting factor for precision studies
- challenge: extend these methods to NLO ("NLOPS multijet merging"):
 from one single event sample, have 1-, 2-,...,n-jet observables at NLO

NLO+PS merging

- significant fraction of interesting final states is accompanied by one (or more) jets
- sometime a single tool describing several jet multiplicities at the same time is needed
- CKKW-L and MLM-merging methods succesfully address this issue <u>at LO</u>: this accuracy will become a limiting factor for precision studies
- challenge: extend these methods to NLO ("NLOPS multijet merging"):
 from one single event sample, have 1-, 2-,...,n-jet observables at NLO

several proposals on the market. However so far only 2 of them have been applied to $t\bar{t}$ processes

- MEPS@NLO [Sherpa]
- FxFx [MadGraph5_aMC@NLO]
- RunII measurements of QCD activity in tt
 events will provide a great chance to test
 these tools

conclusions

- 1. <u>tt cross section</u>
 - total x-section known at NNLO.
 - residual uncertainties from pQCD $\leq 5\%$ (or even less if matching to resummation).
 - first NNLO differential results. As for ${\cal A}_{FB}$, they will become the reference.
- 2. differential cross sections with decays
 - all well-known at NLO (including finite width effects and non-resonant diagrams).
 - shown issues for $WWb\bar{b}$ at NLO+PS, and first steps to fix them.
 - progresses here will probably be important to assess the potential of newly-proposed methods to measure the top mass.
- 3. $t\bar{t}$ production in association with jets or heavy particle
 - at 13 TeV, it will be very relevant (as a signal and as a background)
 - automation of QCD NLO computations now completed: it allows to simulate "everything" at NLO+PS
 - NLO+PS multijet-merging is the more important development in MC community in the last 2-3 years. Tools are available also for $t\bar{t}$: Run II offers the possibility to test them against data.

conclusions

- 1. <u>tt cross section</u>
 - total x-section known at NNLO.
 - residual uncertainties from pQCD $\leq 5\%$ (or even less if matching to resummation).
 - first NNLO differential results. As for ${\cal A}_{FB}$, they will become the reference.
- 2. differential cross sections with decays
 - all well-known at NLO (including finite width effects and non-resonant diagrams).
 - shown issues for $WWb\bar{b}$ at NLO+PS, and first steps to fix them.
 - progresses here will probably be important to assess the potential of newly-proposed methods to measure the top mass.
- 3. $t\bar{t}$ production in association with jets or heavy particle
 - at 13 TeV, it will be very relevant (as a signal and as a background)
 - automation of QCD NLO computations now completed: it allows to simulate "everything" at NLO+PS
 - NLO+PS multijet-merging is the more important development in MC community in the last 2-3 years. Tools are available also for $t\bar{t}$: Run II offers the possibility to test them against data.

Thank you for your attention!