

Inclusive $t\bar{t}$ Cross-Section Measurements with CMS at 7, 8, and 13 TeV

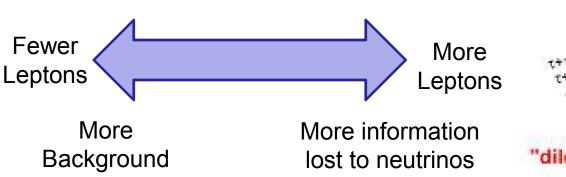
Shannon Crucy

Ghent University On behalf of the CMS collaboration

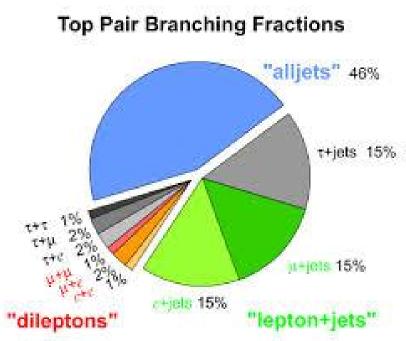
Top2015 September 15, 2015

S. Crucy (UGent) CMS Inclusive Cross-Sections

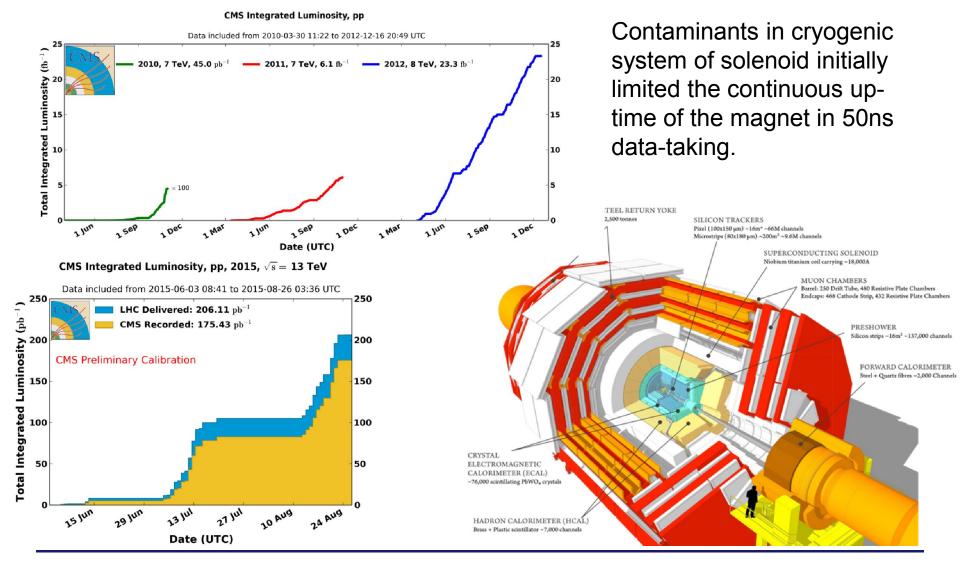
$t\bar{t}$ Cross-Sections


Why inclusive cross-sections?

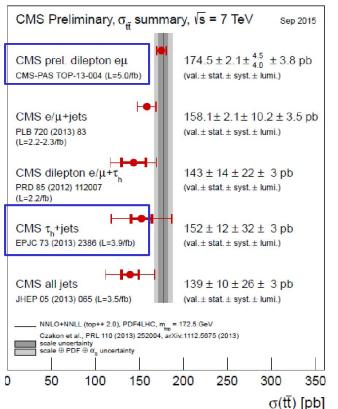
Precision test of SM, such as NNLO
 QCD calculations


• $t\bar{t}$ pair production important background in almost all other analyses

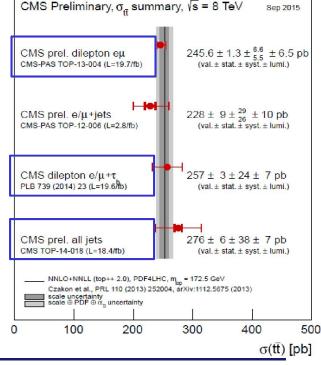
• Can be used to extract information on other quantities (ex. m_t , α_s)


Sensitive to BSM physics

\sqrt{s} (TeV)	$\sigma_{t\bar{t}}(NNLO + NNLL)$ [pb]
	$m_t =$ 172.5 GeV
7	$177.3^{+4.7}_{-6.0}(scale) \pm 9.0(PDF + \alpha_s)$
8	$252.9^{+6.4}_{-8.6}(scale) \pm 11.7(PDF + \alpha_s)$
13	$832^{+20}_{-29}(scale) \pm 35(PDF + \alpha_s)$



The CMS Detector and Luminosity


S. Crucy (UGent) CMS Inclusive Cross-Sections

	\sqrt{s} (TeV)	luminosity	channel	
V	8	18.4 <i>f b</i> ⁻¹	all-jets	
	7	3.54 <i>f b</i> ⁻¹	τ_h + jets	
	13	42 <i>pb</i> ⁻¹	ł + jets	lew!
	8	19.6 <i>f b</i> ⁻¹	$ au_h + e ext{ or } \mu$	4
	7+8	5+19.6 <i>fb</i> ⁻¹	dilepton	
	13	42 <i>pb</i> ⁻¹	dilepton	ew!
			OMO Destinit	

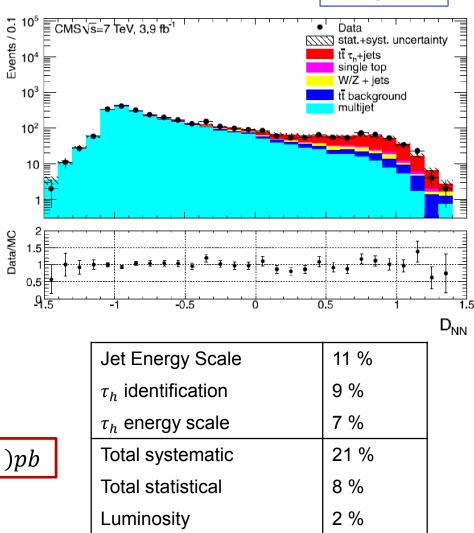
Measurements in previous datasets show good agreement with QCD predictions.

Many measurements have been performed—only a fraction presented here.

S. Crucy (UGent) CMS Inclusive Cross-Sections

arXiv:1301.5755

$\tau_h + jets$ Channel


Trigger: dedicated multijet+ τ_h trigger Signature:

- ▶ ≥ 4 jets with p_T > (45,45,45,20) GeV
- ▶ \geq 1*b*-tag (working point 60% efficient with mistag rate of 1%)
- 1 isolated τ_h candidate, reconstructed with hadron-plus-strips (HPS) algorithm

Background: shape from multijet data events without b-tags

Use ANN to create discriminator Binned negative log-likelihood fit

 $\sigma_{t\bar{t}} = 152 \pm 12(stat.) \pm 32(syst.) \pm 3(lum.)pb$

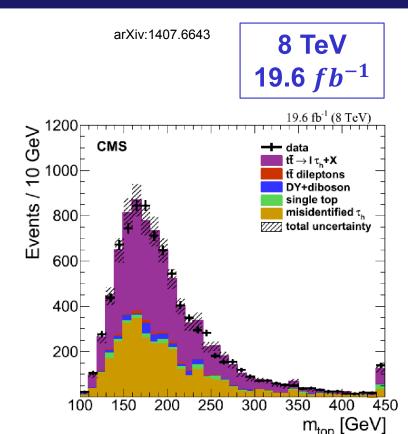
7 TeV

3.9 fb^{-1}

Lepton + τ_h Channel

Trigger: single electron/muon

Signature:

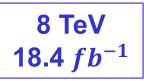

- 1 isolated $e(\mu)$ with p_T >35(30) GeV
- ▶ ≥ 3 jets with p_T > (30,30,20) GeV
- ▶ ≥ 1 b-tag (working point 60% efficient with mistag rate of 0.1%)
- ▶ 1 τ_h candidate reconstructed with HPS with p_T > 20 GeV

• $E_T^{miss} > 40 \text{ GeV}$

Use KINb to calculate possible m_t values for additional separation

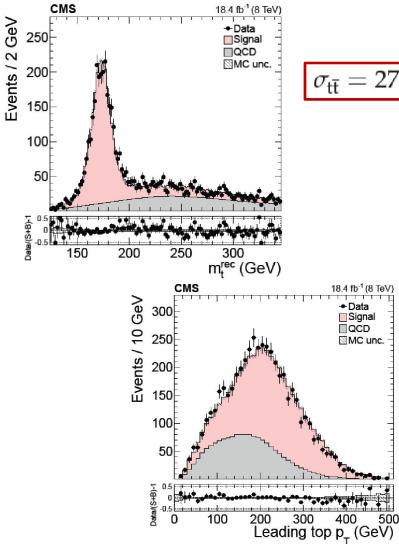
Channels combined with BLUE

 $\begin{aligned} \sigma_{t\bar{t}}(\mathrm{e}\tau_h) &= 255 \pm 4\,(\mathrm{stat.}) \pm 24\,(\mathrm{syst.}) \pm 7\,(\mathrm{lum.})\,\,\mathrm{pb} \\ \sigma_{t\bar{t}}(\mu\tau_h) &= 258 \pm 4\,(\mathrm{stat.}) \pm 24\,(\mathrm{syst.}) \pm 7\,(\mathrm{lum.})\,\,\mathrm{pb} \\ \sigma_{t\bar{t}}(\mathrm{combined}) &= 257 \pm 3\,(\mathrm{stat.}) \pm 24\,(\mathrm{syst.}) \pm 7\,(\mathrm{lum.})\,\,\mathrm{pb} \end{aligned}$



τ_h Identification	6%
τ_h Mis-Identifcation	4.3%
Factorization Scale	2.9%
Total systematic	9.5%
Total statistical	1%
Luminosity	2.6%

CMS-TOP-14-018 8 TeV New (to be submitted) All-Jets Channel: Method 18.4 fb^{-1} CMS 18.4 fb⁻¹ (8 TeV Se∕ 700 Data Trigger: multijet trigger Signal QCD Events / 2 MC unc Signature: ▶ ≥ 6 jets with p_T >(60,60,60,60,40,40) GeV 400 300 ▶ ≥ 2 *b*-tags (working point is 70% efficient with 1.4%200mistag rate) 100 Kinematic fit: • perform χ^2 fit to fix jet-parton assignment 60 100- allow jet four-momenta to vary within p_T and angular Fourth jet p₁ (GeV) uncertainties, and impose $m_W = 80.4$ GeV and $m_t = m_{\bar{t}}$ 18.4 fb⁻¹ (8 TeV) Events / 2 GeV 008 000 009 000 Data • Require $P(\chi^2) > 0.15$ and $\Delta R_{bb} > 2.0$ Signal QCD MC unc. Background: QCD multijet background only non-neglible contributor 400 shape taken from multijet data events where events containing b-tagged jets are vetoed 200 Unbinned maximum likelihood fit to m_t^{rec} to extract signal and background normalizations 80 90 100 Sixth jet p_ (GeV)


S. Crucy (UGent) CMS Inclusive Cross-Sections

CMS-TOP-14-018 (to be submitted)

All-Jets Channel: Results

0

$_{ m t\bar{t}} = 275.6 \pm 6.1 ({ m stat.}) \pm 37.8 ({ m syst.}) \pm 7.2 ({ m lumi.}) { m pk}$	2

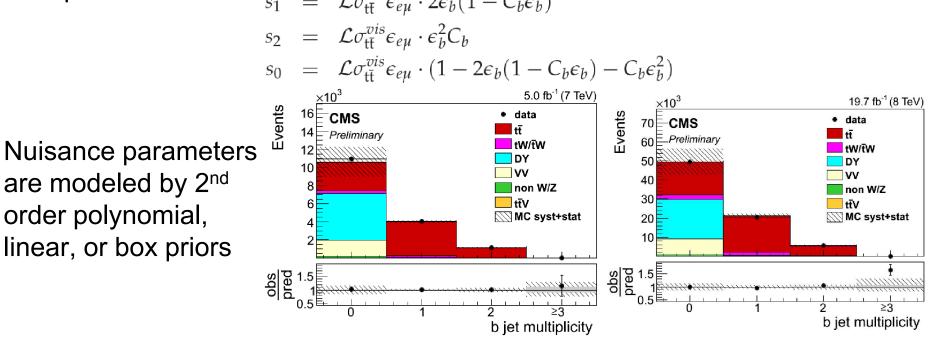
Source	
Background modeling	$\pm 4.9\%$
JES	-7.0, +6.8%
JER	$\pm 3.5\%$
b tagging	±7.3%
Trigger efficiency	-2.2, +2.0%
Underlying event	$\pm 4.4\%$
Matching partons to showers	-4.2, +2.4%
Factorization and renormalization scales	-0.5, +3.8%
Color reconnection	$\pm 1.4\%$
Parton distribution function	$\pm 1.5\%$
Hadronization	±2.0%
Total systematic uncertainty	±13.6%
Statistical uncertainty	±2.3%
Integrated luminosity	±2.6%
	/ /

New! Dilepton Channel: Method 5.0 fb^{-1}

19.7 fb^{-1}

CMS-PAS-TOP-13-004

8 TeV


7 TeV

Trigger: dilepton ($e\mu$) trigger

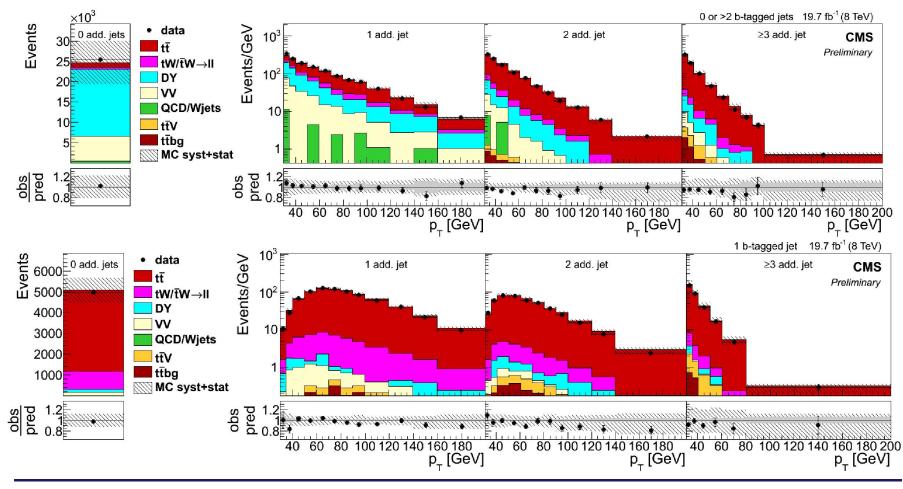
Signature: (note: no cut is made on number of jets!)

- OS isolated eµ pair with p_T >20 GeV
- jets have p_T > 30 GeV; b-jets are tagged with 60% efficiency and 0.1% mistag rate

Extended binned likelihood fit; signal modeled with Poisson terms with expected events: $s_1 = \mathcal{L}\sigma_{\mathrm{tf}}^{\mathrm{vis}}\epsilon_{e\mu} \cdot 2\epsilon_b(1-C_b\epsilon_b)$

CMS-PAS-TOP-13-004

7 TeV


5.0 fb^{-1}

8 TeV

19.7 fb^{-1}

Dilepton Channel: Method

Jet p_T distributions allow fit to constrain systematics related to gluon radiation, jet energy scale, etc.

CMS-PAS-TOP-13-004

Dilepton Channel: Results

7 TeV 5.0 *fb*⁻¹ 8 TeV 19.7 *fb*⁻¹

$$\sigma_{t\bar{t}} = \frac{\sigma_{t\bar{t}}^{vis}}{A_{e\mu}} = 3.05 \pm 0.04 \text{ (stat)} \pm \frac{0.08}{0.07} \text{ (syst)} \pm 0.07 \text{ (lumi) pb} \text{ at } \sqrt{s} = 7 \text{ TeV and}$$

$$\sigma_{t\bar{t}}^{vis} = 4.24 \pm 0.02 \text{ (stat)} \pm \frac{0.11}{0.10} \text{ (syst)} \pm 0.11 \text{ (lumi) pb} \text{ at } \sqrt{s} = 8 \text{ TeV.}$$

$$\sigma_{t\bar{t}} = 174.5 \pm 2.1 \text{ (stat)} \pm \frac{4.5}{4.0} \text{ (syst)} \pm 3.8 \text{ (lumi) pb} \text{ at } \sqrt{s} = 7 \text{ TeV and}$$

$$\sigma_{t\bar{t}} = 245.6 \pm 1.3 \text{ (stat)} \pm \frac{6.6}{5.5} \text{ (syst)} \pm 6.5 \text{ (lumi) pb} \text{ at } \sqrt{s} = 8 \text{ TeV.}$$

Source	Uncertainty (%)		
	7 TeV	8 TeV	
Trigger	1.2	1.2	
Lepton ID/Isolation	1.4	1.5	
Jet Energy Scale	0.7	0.9	
Total Systematic	+2.7 -2.3	+2.7 -2.5	
Luminosity	2.1	2.6	
Total Statistical	1.2	0.6	

Extensions

 Extraction of top quark pole mass (see top mass session tomorrow!)

 Stop quark limits (see top and exotica session Thursday!)

Dilepton Channel: Method

Trigger: dilepton ($e\mu$) trigger Signature:

- Isolated OS $e\mu$ pair, $p_T > 20$ GeV
- \geq 2 jets, p_T > 30 GeV, no b-tagging!
- $m_{ll} > 20 \text{ GeV}$

Backgrounds:

- DY from $R_{out/in}$ method
- Non-W/Z from SS control region
- Single t/VV from MC

Cut and Count

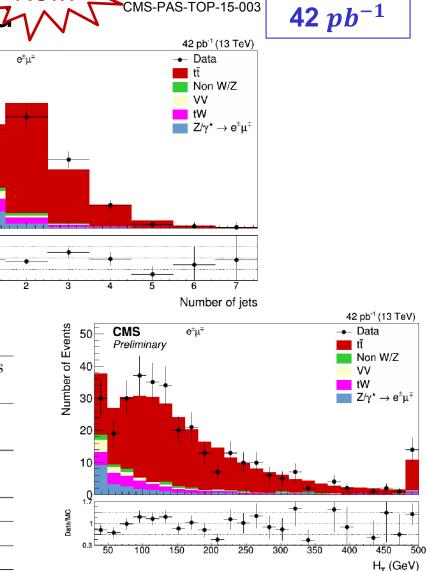
	Number of events
Source	$\mathrm{e}^{\pm}\mu^{\mp}$
Drell–Yan	6.4 ± 1.2
Non-W/Z leptons	8.5 ± 4.3
Single top quark	10.6 ± 3.4
VV (V = W or Z)	2.6 ± 0.9
Total background	28.1 ± 5.7
$t\bar{t}$ dilepton signal	207 ± 16
Data	220

180 Ex 160 Ex

Jo 140 Jo 120 Jo 120 Jo 120

80

60 40


20

0.3

Data/MC

CMS

Preliminary

New

13 TeV

Dilepton Channel: Results

CMS-PAS-TOP-15-003

13 TeV 42 *pb*⁻¹

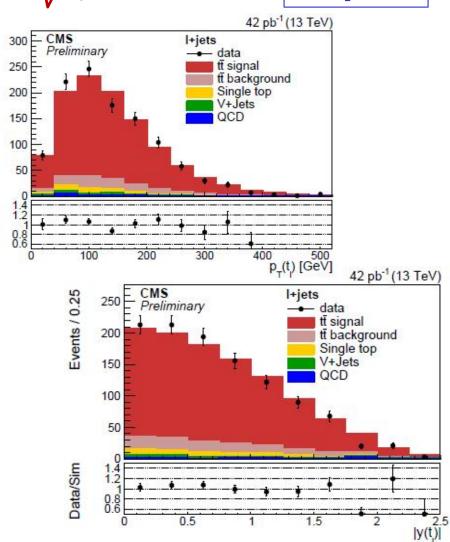
42 pb⁻¹ (13 TeV)

 $\sigma_{t\bar{t}} = 772 \pm 60(stat) \pm 62(syst) \pm 93(lumi)pb$ (total)

 $\sigma_{t\bar{t}} = 12.9 \pm 1.0(stat) \pm 1.1(syst) \pm 1.5(lumi)$ pb (fiducial)

			$\begin{array}{c c} 2 \\ \hline \\ 45 \\ \hline \\ 40 \\ \hline \\ 40 \\ \hline \\ 6 \\ oc \\ \hline \\ \\ 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Source	$\Delta \sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{\rm t\bar{t}} / \sigma_{\rm t\bar{t}}$ (%)	
Data statistics	60	7.7	$I = 30 E$ $Z/\gamma^* \rightarrow e^{\pm}\mu^{\mp}$
Trigger efficiencies	39	5.0	
Lepton efficiencies	33	4.3	20
Lepton energy scale	< 1	≤ 0.1	
Jet energy scale	20	2.6	10
Jet energy resolution	< 1	≤ 0.1	5
Pileup	2.8	0.4	
Scale (μ_F and μ_R)	1.5	0.2	
tt NLO generator	15	1.9	
tt hadronization	14	1.8	0.3 ^C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PDF	12	1.5	$\Delta \Phi(e^{\pm}, \mu^{\mp})$ (rad) / 2
Single top quark	14	1.8	
VV	3.5	0.5	Dependence on top quark mass
Drell–Yan	3.9	0.5	
Non-W/Z leptons	8	1.0	was measured; increasing to
Total systematic (no integrated luminosity)	62	8.0	$m_t = 173.34 \ GeV$ decreases $\sigma_{t\bar{t}}$
Integrated luminosity	93	12	-
Total	126	16.4	by ~0.7%.

l+jets Channel: Method


Trigger: single lepton triggers Signature

- Isolated e or μ with p_T >30 GeV
- ▶ ≥ 4 jets with p_T > 25 GeV (at least two above 35 GeV) Data/Sim
- ▶ ≥ 1 b-tag (working point 65% efficient with mistag rate of 3%)

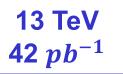
Kinematic reconstruction of $t\bar{t}$ system

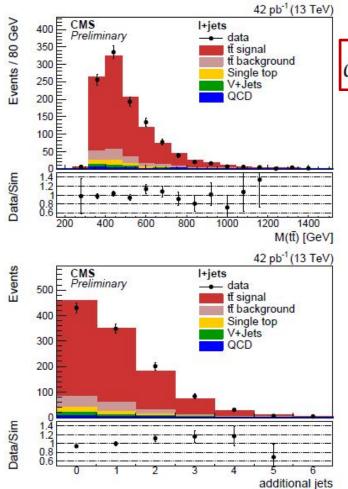
- For differential measurement→Otto's talk
- Cut on likelihood function (that includes mass constraints and neutrino momentum) to further reduce backgrounds
- Final sample is ~93% $t\bar{t}$ events

Backgrounds taken from MC

MS-PAS-TOP-15-005

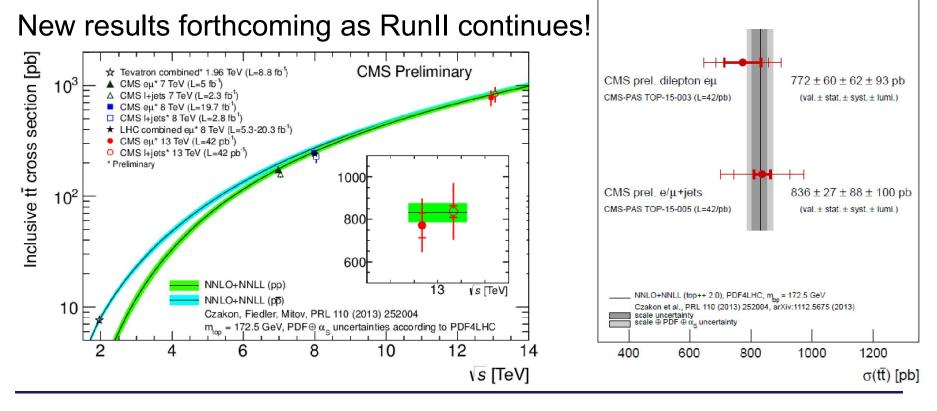
New


Events / 40 GeV


13 TeV

42 pb^{-1}

l+jets Channel: Results


$\sigma_{\rm tot} = 836 \pm 27 \,({\rm stat}) \pm 84 \,({\rm sys}) \pm 100 \,({\rm lumi}) \,{\rm pb}.$

source	inclusive cross section [%]
statistical uncertainty	3.2
b tagging	5.1
jet energy scale	3.5
jet energy resolution	3.4
lepton selection	3.0
$E_{\rm T}^{\rm miss}$ (non jet)	< 0.1
pileup	1.2
background	1.6
PDF	4.7
factorization scale	< 0.1
renormalization scale	< 0.1
NLO generator	2.0
POWHEG + PYTHIA8 vs. HERWIG++	3.4
total systematic uncertainty (no luminosity)	10.0
luminosity	12
total uncertainty	15.6

Conclusions

First 13 TeV results are now available!

- Both total and fiducial cross-sections have been measured
- 7 and 8 TeV datasets still providing additional measurements and precision.

S. Crucy (UGent) CMS Inclusive Cross-Sections

Sep 2015

Thank you!

Bibliography

\sqrt{s} (TeV)	luminosity	channel	Title
7	3.54 fb^{-1}	all-jets	Measurement of the $t\bar{t}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} = 7$ TeV
8	18.4 <i>fb</i> ⁻¹	all-jets	Measurement of the top quark pair production cross-section in the all-hadronic final state in pp collisions at $\sqrt{s} = 8$ TeV
7	3.54 fb^{-1}	τ_h + jets	Measurement of the the $t\bar{t}$ production cross section in the τ + jets channel in pp collisions at $\sqrt{s} = 7$ TeV
8	2.8 fb^{-1}	ℓ + jets	Top pair cross section in e/µ+jets at 8 TeV
13	42 <i>pb</i> ⁻¹	ℓ + jets	Measurement of the inclusive and differential the $t\bar{t}$ production cross sections in lepton + jets final states at 13 TeV
8	19.6 <i>fb</i> ⁻¹	τ_h + e or µ	Measurement of the $t\bar{t}$ production cross section in pp collisions at $\sqrt{s} = 8$ TeV in dilepton final states containing one τ lepton
7+8	5+19.6 <i>fb</i> ⁻¹	dilepton	Measurement of the the $t\bar{t}$ production cross section in the $e\mu$ channel in pp collisions at $\sqrt{s} = 7$ and 8 TeV
13	42 <i>pb</i> ⁻¹	dilepton	Measurement of the top quark pair production cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV with the CMS detector

Some Explanation for Some Systematic Uncertainties*

Trigger: estimated using tag-and-probe methods on Z events (single lepton) or using E_T^{miss} or H_T cross-triggers (dilepton)

Lepton Identification/Isolation: estimated using tag-and-probe methods on Z events

Lepton Energy Scale: estimated by studying Z events in data and MC

- Jet Energy Scale/Resolution and E_T^{miss} : estimated by varying the jet energies/ E_T^{miss} by one standard deviation and recalculating E_T^{miss} as needed
- Pile-up: estimated by varying the inelastic cross-section or by varying the vertex reconstruction efficiencies in MC simulations
- b-tagging: estimated by varying b-tagging scale factors within their statistical uncertainties
- Backgrounds: for those taken from simulation, estimated by varying the normalizing cross-section. Uncertainties for data-driven estimates are method-dependent.
- PDF: estimated by recalculating the acceptance after reweighting events using the NNPDF3.0 error sets (dilepton) or NNPDF30_nlo_as_0118 parameterization (single lepton)
- Factorization/Renormalization: estimated by varying these scales up and down by a factor of two and reweighting the events
- Generator/Hadronization Scheme: POWHEGv2 with Pythiav8.2 is used as nominal; MG5_AMC@NLO with Pythiav8.2 is used to compare generators, while POWHEGv2 with HERWIG++ is used to compare hadronization scheme

*PDF sets and generators listed here were used in the 13 TeV measurements. Earlier measurements use similar methods, but with the recommended information available at the time.

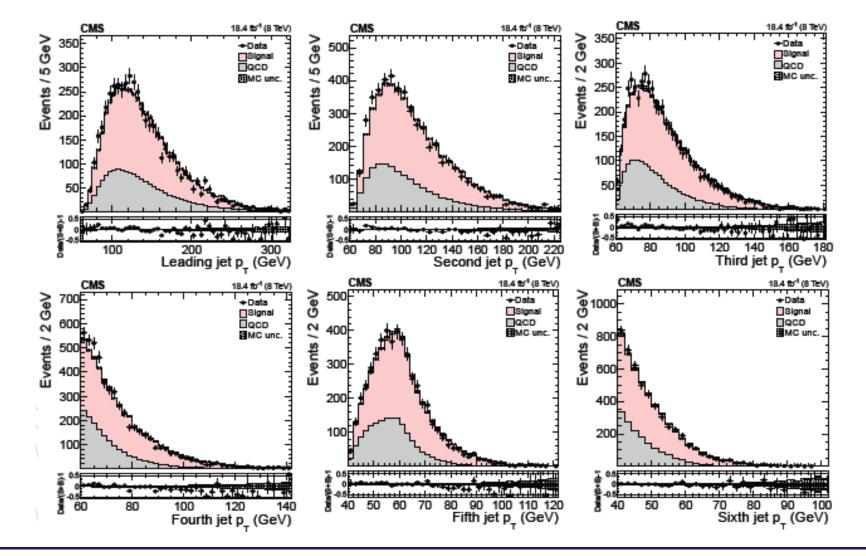
Full Systematic Tables

7 TeV τ_h + jets

Source	Rel. uncert. [%
W/Z/tt backgr. cross section uncert.	±3
Top-quark mass	±3
Renormalization/factorization scale	±2
Parton matching	± 3
PDF	±5
τ _h trigger efficiency	±7
Pileup	+5 -1
τ_h energy scale	±7
$\tau_{\rm h}$ identification	±9
Jet energy scale	±11
Jet energy resolution	±2
Unclustered $E_{\rm T}^{\rm miss}$	±7
b-tagging	±3
Multijet background reweighting	±5
Total syst. uncert.	±21
Stat. uncert. from fit and MC samples	±8
Stat. uncert. from trigger	±0.4
Total stat, uncert.	± 8

8 TeV Lepton + τ_h

Source	Uncert		
	$e\tau_h$	$\mu \tau_{\rm h}$	Combined
Experimental uncertainties:			
$\tau_{\rm h}$ jet identification	6.0	6.0	6.0
τ_h misidentification background	4.3	4.3	4.3
τ _h energy scale	2.4	2.5	2.5
b-jet tagging, jet misidentification	1.6	1.6	1.6
jet energy scale, jet energy resolution, E_{T}^{miss}	1.9	1.9	1.9
lepton reconstruction	0.8	0.6	0.5
other backgrounds	0.6	0.7	0.7
luminosity	2.6	2.6	2.6
Theoretical uncertainties:			
matrix element-parton shower matching	1.7	1.3	1.5
factorisation/renormalisation scale	2.9	2.9	2.9
generator	1.5	1.5	1.5
hadronisation	1.7	1.7	1.7
top-quark p _T modelling	0.7	0.5	0.6
parton distribution functions	0.8	0.7	0.7
total systematic uncertainty	9.6	9.5	9.5


Full Systematic Tables (cont.)

7+8 TeV dilepton

Source	Uncertainty [%]	
	7 TeV	8 TeV
Trigger	1.2	1.2
Lepton ID/isolation	1.4	1.5
Lepton energy scale	0.1	0.1
Jet energy scale	0.7	0.9
Jet energy resolution	0.1	0.1
Single top	0.9	0.6
DY	1.2	1.2
tt other	0.1	0.1
$t\bar{t} + V$	0.0	0.1
Diboson	0.2	0.6
W+jets	0.0	0.0
QCD	0.0	0.0
B-tag	0.5	0.5
Mistag	0.2	0.1
Pileup	0.3	0.3
Q^2 scale	0.3	0.3
ME/PS matching	0.2	0.1
$MG+PY \rightarrow PH+PY$	0.2	0.4
Hadronization (JES)	0.6	0.8
Top p_T	0.3	0.3
Color reconnection	0.1	0.0
Underlying event	0.0	0.1
PDF	0.2	0.7
Luminosity	2.2	2.6
Statistical	1.2	0.6

CMS-PAS-TOP-14-018

All-Jets Channel

8 TeV

18.4 fb^{-1}