

Run 2 Operations

ATLAS integrated luminosity at \sqrt{s} = 13 TeV

- 50 ns period until July and part of August:
 - Integrated luminosity recorded: 133 pb-1
- 25 ns period since August:
 - Integrated luminosity recorded: 186 pb⁻¹
- Data taking efficiency: ~90%

- 50 ns period:
 - Mean pileup: ~20 interactions per BC
- 25 ns period:
 - Mean pileup: ~17 interactions per BC

The ATLAS detector

- High precision silicon and straw-tube gaseous detectors
- Fine-granularity/longitudinally segmented calorimeter
- Air-core toroid muon spectrometer

New in Run 2: Innermost pixel layer (IBL)

Vertex position of hadronic interaction candidates

• IBL operations:

- IBL detector is fully operational
- Used hadronic interactions to get an initial material mapping in-situ

Performance:

- Significant improvement in impact parameter resolution
- Important for improving b-tagging

Longitudinal impact parameter resolution vs p_T

tt production in ATLAS

ATLAS inclusive tt cross-section measurements vs √s

Electron objects

Electron trigger and reconstruction

- Electron trigger:
 - New LH-based identification used
 - Single medium (isolated) electron triggers with $E_{\mathsf{T}} > 24$ GeV used so far
 - Tighter selections prepared for higher luminosities
- Electron reconstruction:
 - Use of cluster as a seed and tracks to cluster matching later
 - Dedicated track pattern and fit to account for bremsstrahlung in dead material applied
 - Discriminate electrons from unconverted photons
- Electron performance:
 - Used data samples of Z and J/ψ events
 - Reasonable energy scale and resolution

Di-electron inv. mass distribution

Electron identification efficiency

TRT electron probability

Electron shower shape variable

Electron identification efficiency vs E_T

- Electron identification:
 - Based on a likelihood obtained combining various discriminating variables:
 - Shower shapes, track properties, track-cluster matching, etc.
 - Three different identification criteria defined: loose, medium and tight

- Electron identification efficiency:
 - Measured in data
 - Efficiencies vary between 75% and 95%
 - Differences between data and MC corrected by in-situ calibration
 - Uncertainty of ~3-5%

- Electron isolation definition:
 - 1) Calo-based E_Tiso:

 $\Sigma E_{T}^{clusters}$ ($\Delta R < 0.2$ around electron)

Excluded cells in $\Delta\eta \times \Delta\phi$ =0.125 x 0.175 around e⁻ Energy corrected event-by-event using the ambient energy density to mitigate pileup effects

2) Track-based p_Tiso:

 $\Sigma p_T^{trks} (\Delta R = min \{ 10 \text{ GeV/E}_T, 0.3 \})$ Electron track excluded

- Performance:
 - Use of a real data sample of Z decays
 - Reasonable comparison with simulation

Electrons in tt enriched data sample

Muon objects

Muon trigger and reconstruction

Muon trigger:

- Transverse momentum calculation improved using hits from new chambers in the endcaps
- Muon reconstruction:
 - Combining tracks of the ID and MS
 - Muons reconstructed at $|\eta| < 2.5$
 - Different selection categories are defined: loose, medium, tight

Muon reconstruction efficiency:

- Used data samples of J/Ψ and Z event candidates
- Efficiency measured using a tag-and-probe method like in Run 1
- More than 98% efficiency for muons with $p_T > 10 \; \text{GeV}$
 - Well modeled by simulation
- Uncertainty < 1% for muons with $p_T > 20 \text{ GeV}$

Muon momentum scale and resolution

Muon momentum scale:

- Combines Inner Detector and Muon Spectrometer information
- Use of J/Y and Z events
- Corrections to the simulated muon momentum scale and resolution derived from a template-based likelihood fit using Z and J/Ψ decays at √s = 8 TeV
- Data taken at 13 TeV used to validate and update the corrections to account for changes of the detector conditions

• Performance:

- Momentum scale already understood with a precision of ~0.2%
- Resolution understood to within $\sim 5\%$ in the momentum range of the J/Ψ

Muon isolation

Muon isolation definition:

- 1) ΣE_T^{topo} (topoclusters $\Delta R < 0.2$) / p_T^{μ} Clusters $\Delta R < 0.1$ excluded
- 2) Σp_T^{trks} ($\Delta R = min \{ 10 \text{ GeV/p}_T, 0.3 \}) / <math>p_T^{\mu}$ Muon track excluded

Tracks p_T dependent cone size chosen to improve performance for μ 's from boosted particle decays

Performance:

- Use of a real data sample of Z decays
- Using pairs of *Medium* muons w/ $\Delta R \ge 0.3$
- Good agreement with MC

Combined track and calo isolation efficiency vs muon p_T

Calorimeter-based isolation variable divided by muon p_T

Track-based isolation variable divided by muon p_T

Muons in tt enriched data sample

Tau objects

Hadronic tau commissioning

Hadronic taus identification:

- Like in Run 1, plan to use various discriminating variables combined in Boosted Decision Trees to reject taufakes from electrons and jets, modified for Run 2 conditions
- Candidates required to be associated with 1 or 3 tracks within a core region $\Delta R < 0.2$

Performance studies:

- Used various samples of minimum bias, di-jets, W($\mu\nu$) /Z($\mu\mu$ /ee)+jets and Z $\rightarrow \tau\tau$
- Studied various discriminating variables
- Reasonably good agreement with simulation
- Will use more data for detailed studies

Jet objects

Jet reconstruction and selection

Jet reconstruction:

- Use anti- k_T algorithms (R = 0.4) starting from topological clusters (EM scale)
- Jets calibrated applying MC-based p_{T_i} η corrections for non-compensating calorimeter and inactive material as well as in-situ corrections from Run 1 data
- Pileup subtraction applied for both intime and out-of-time pileup
 - Use of a Jet Vertex Tagger discriminant based on the Jet Vertex Fraction and the relative jet p_T from tracks of the hard-scatter vertex

Jet quality studies:

- Used dedicated selections for good jets (mainly di-jet events) and fake jets (events \geq 1 jet with unbalanced p_T)
- Jet quality selection very similar to Run 1
- Very good agreement with simulation

Jets p_T distribution

Maximum energy fraction in any single calorimeter layer

Jet performance and uncertainties

<#IBL hits > vs \(\Delta\R\) (jets, tracks)

Jet energy scale uncertainties vs jet pt

Jet performance:

- Studied various jet property variables
- Generally well described by simulation with few exceptions, that are consistent with Run 1

Jet uncertainties:

- Estimated with 2012 data and verified with early Run 2 data
- ~1-6% uncertainty depending on p_T and n
 - Will improve with in-situ calibrations
- Various nuisance parameter models available for top physics analyses

Large-R jet commissioning

Introduction:

- Important for high p_T objects, which are boosted and result in collimated decay products
 - Difficult to resolve small-R jets

Reconstruction:

- Large-R jets $(R \ge 1)$
- Use of different grooming techniques exploiting the jet substructure like trimming/filtering/etc.
 - · Distinguish between heavy particle decays from multi-jet processes

Performance:

- Groomed objects are less sensitive to pileup
- Reasonably good agreement with simulation

Imma Riu

Promises to be a useful tool for high p_T boson or top tagging in Run 2

Expected pileup dependence of large-R jet mass

Boosted tt event candidate at 13 TeV

b-tagged jet objects

b-tagging performance

#vertices w/ \geq 2 trks in $t\overline{t} \rightarrow e\mu$ events ATLAS Preliminary • Data 2015

Reconstruction:

- Use multivariate algorithm (MVA)
 - Combine discriminating variables from three basic algorithms (IPbased, SV finding, fit of the B/Dhadron cascade decay) using a boosted decision tree
- Many algorithmic updates in both basic taggers and final MVA

Performance:

- Expected a factor ~4 increase in light-jet rejection in b-tagging algorithms with respect to Run 1
 - Majority of improvement from IBL
- First validation using a sample of jets from b-jet enriched tī→eµ +jets data events
 - Variables input to b-tagging MVA as well as output discriminant well described

b-tagged jets in tt enriched data sample

Missing transverse energy

Missing transverse energy performance

MET definition:

- E_T^{miss} = hard E_t^{miss} + soft E_T^{miss}
- To mitigate the effect of pileup, the soft term is track-based (TST E_{T}^{miss}) for these early studies
 - p_T^{trk} > 0.4 GeV associated to PV
 - Includes overlap removal btw tracks and clusters associated to hard objects

MET performance:

- Used samples of $Z \rightarrow \mu\mu$ and $W \rightarrow ev$
- Agreement with MC within 20%

Expected resolution of E_T^{miss} vs # of primary vertices

Resolution of E_T^{miss} vs sum E_T

First 13 TeV tt cross-section result

- Result already shown in July at the EPS conference
- New results to be shown during this week!

Summary and outlook

- LHC has delivered this summer a good sample of both 50 and 25 ns proton-proton collisions at \sqrt{s} = 13 TeV
- ATLAS is working well and has successfully commissioned the new upgrades for Run 2 including the new IBL detector
- Studied the performance of physics objects using the first data taken
 - Improvement in object reconstruction with respect to Run 1
 - Reasonable agreement with Monte Carlo predictions observed so far
 - Already small systematic uncertainties provided for physics objects
- First early physics measurements and results of physics searches already shown at the summer conferences
- Physics studies and further commissioning will continue with more 13 TeV data being acquired

References

• Muons:

- Muon reconstruction performance in early 13 TeV data ATL-PHYS-PUB-2015-037

Electrons:

- Electron trigger performance in 2015 ATLAS data ATL-COM-DAQ-2015-124
- Electron shower shapes, tracking, isolation and invariant mass distributions from $Z\rightarrow$ ee and $J/\psi\rightarrow$ ee events ATL-COM-PHYS-2015-728
- Electron Efficiency Measurements in Early 2015 Data ATL-COM-PHYS-2015-858
- Electron identification measurements in ATLAS using √s = 13 TeV data with 50 ns bunch spacing
 ATL-PHYS-PUB-2015-041

Jets:

- Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the ATLAS Detector at \sqrt{s} = 13 TeV ATL-PHYS-PUB-2015-015
- Identification of Boosted, Hadronically-Decaying W and Z Bosons in \sqrt{s} = 13TeV Monte Carlo Simulations for ATLAS ATL-PHYS-PUB-2015-033
- Properties of jets and inputs to jet reconstruction and calibration with the ATLAS detector using proton-proton collisions at \sqrt{s} = 13 TeV ATL-PHYS-PUB-2015-036
- Performance of jet substructure techniques in early \sqrt{s} = 13 TeV pp collisions with the ATLAS detector ATLAS-CONF-2015-035

References

Taus:

- Commissioning of the reconstruction of hadronic tau lepton decays in ATLAS using pp collisions at \sqrt{s} = 13 TeV ATL-PHYS-PUB-2015-025

b-jets:

- Track Reconstruction Performance of the ATLAS Inner Detector at √s = 13 TeV ATL-PHYS-PUB-2015-018
- Expected performance of the ATLAS b-tagging algorithms in Run-2
 ATL-PHYS-PUB-2015-022
- Commissioning of the ATLAS b-tagging algorithms using tt events in early Run-2 data

 ATL-PHYS-PUB-2015-039

MET:

- Expected performance of missing transverse momentum reconstruction for the ATLAS detector at \sqrt{s} = 13 TeV ATL-PHYS-PUB-2015-023
- Performance of missing transverse momentum reconstruction for the ATLAS detector in the first p-p collisions at \sqrt{s} = 13 TeV ATL-PHYS-PUB-2015-027

Analysis:

- Measurement of the $t\bar{t}$ production cross-section in pp collisions at \sqrt{s} = 13 TeV using eµ events with b-tagged jets ATLAS-CONF-2015-033