

Single top production measurements at the LHC: other channels

Carolina Gabaldon On Behalf of the ATLAS and CMS Collaborations

LPSC, CNRS/IN2P3, labex Enigmass

"Top2015 - 8th International Workshop on Top Quark Physics" Ischia, Italy, 14-18/09/2015

Outline

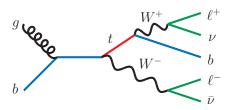
- Why is the single top quark so interesting?
- Single top-quark production in the *Wt* channel at 8 TeV
 - Inclusive cross-section measurements in CMS and ATLAS and the LHC combination
 - Fiducial cross-section measurement in ATLAS
- Single top-quark production in the *s* channel at 8 TeV
 - Inclusive cross-section limits in CMS and ATLAS
 - New single top-quark production in the s-channel in ATLAS
- ▶ CKM matrix element (|*V*_{tb}|) determination
- Conclusions

Why is the single top quark so interesting?

Single top-quark production via electroweak interaction, involving a *Wtb* vertex *t*-channel *Wt* channel *s*-channel *wt* channel *s*-channel

NLO+NNLL with $m_t = 172.5 \text{ GeV}$	\sqrt{s} (pb)	σ (<i>t</i> -channel)	σ (Wt)	σ (s-channel)
		87.8 ± 3.4	22.4 ± 1.5	5.6 ± 0.2
	8 TeV	Phys. Rev. D 83, 091503(R) (2011)	Phys. Rev. D 82, 054018 (2010)	Phys. Rev. D 81, 054028 (2010)

✓ Measurements of the single top production provide a **test of SM predictions**:


- Production cross-section and direct determination of the quark mixing matrix element |V_{tb}|
 → Test of unitarity of the CKM matrix
- Probe of the *b*-quark structure function

✓ Powerful probe for physics beyond the SM (BSM) related to EWSB:

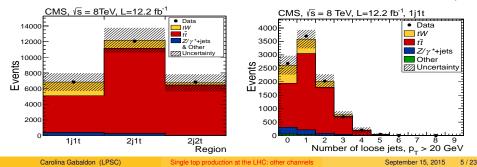
Resonances (W', H+, B'), vector-like quarks, anomalous couplings.

 $\checkmark\,$ Significant **background** in search for Higgs and several expected BSM processes

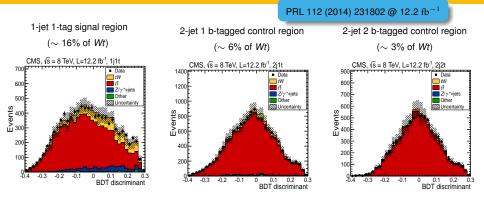
Wt associated production: generic selection

Dilepton Wt signature

- ✓ Two oppositely charged isolated leptons (*eµ*, *ee*, *eµ*)
- ✓ One high p_T and central $|\eta|$ *b*-jet
- ✓ Missing transverse energy (E_T^{miss}) from the two neutrinos
- Events are divided into analysis regions by jet and *b*-tag multiplicity
- Large contribution from the top pair production, dominant background → > 70% in the signal region (1-jet tagged as *b*-jet)
- Multivariate analysis based on Boosted Decision Trees (BDT) is used to separate the Wt signal from the backgrounds


CMS: Wt cross-section @ 8 TeV (1)

PRL 112 (2014) 231802 @ 12.2 fb⁻¹


- **Specific selection** dilepton channel ($e\mu$, ee, $\mu\mu$ channels)
 - Leptons with $p_T > 20 \text{ GeV}$
 - 1 or 2 central jets, 1 *b*-tagged, $p_T >$ 30 GeV & $|\eta| <$ 2.5
 - ightarrow Looser jets also considered with $p_T > 20~{
 m GeV}$ & $|\eta| < 4.9$
 - $E_T^{miss} > 50 \text{ GeV } \& m_{\ell\ell} > 20 \text{ GeV } \&$ for same-flavour channels exclude around Z-boson mass

Analysis strategy

- 1 signal region with 1-jet b-tagged (1j1t)
 - 2 control regions enriched in tt: 2 jets with either one (2j1t) or two b-tagged (2j2t).
- Three BDT discriminants: 13 highest-ranking variables.
 - Most powerful variables: n^o of loose jets & p_T of the system of leptons, jets and E_T^{miss} (p_T^{sys})

CMS: Wt cross-section @ 8 TeV (2)

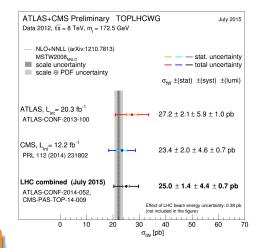
- The inclusive Wt production cross-section is measured from a simultaneous binned likelihood fit of the BDT distributions.
 - The 2-jets control regions constrain the tt background uncertainties and the b-tagging uncertainties.

 $\sigma_{Wt} = 23.4 \pm 5.4 \text{ pb} (23\%)$ Significance: 6.1 σ (5.4 σ exp.)

OBSERVATION of the Wt channel

Dominant uncertainties (in $t\bar{t}$ simulation):

- ME/PS matching (\sim 14%)
- renormalization/factorization scale (\sim 12%)

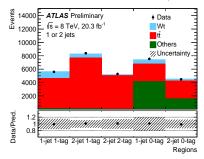

Wt cross-section: LHC combination @ 8 TeV

Combination of *Wt* cross-section measurements by ATLAS and CMS using BLUE

Source	Uncertainty	
Source	(%)	(pb)
Data statistics	5.5%	1.4
Simulation statistics	1.8%	0.5
Luminosity	2.7%	0.7
Theory modeling	15.8%	4.0
Background normalization	2.3%	0.6
Jets	5.3%	1.3
Detector modeling	4.9%	1.2
Total systematics (excl. lumi)	17.5%	4.4
Total systematics (incl. lumi)	17.7%	4.4
Total uncertainty	18.6%	4.7

LHC combination:

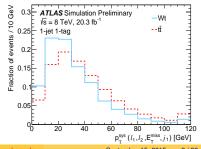
 $\sigma_{Wt} = 25.0 \pm 4.7 \text{ pb}$ (total unc. 19%)



* combination uses a preliminary ATLAS result in the *e*μ channel (ATLAS-CONF-2013-100)

NEW! ATLAS: Wt @ 8 TeV - dilepton channel

Specific selection


- Leptons with $p_T > 25 \text{ GeV}$
- One or two central jets with $p_T > 20 \text{ GeV}$ & at least one *b*-tagged jet
- Only for *ee* and $\mu\mu$: reject events with 81 GeV < $m_{\ell\ell}$ < 101 GeV
- Set of requirements on E_T^{miss} & $|\eta^{sys(\ell,j)}| < 2.5$

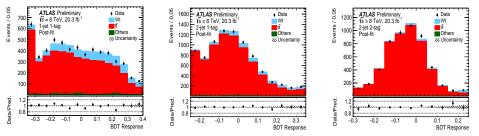
Three BDT discriminants into the cross-section fit: 13 (1-jet 1-tag) & 16 (2-jet b-tagged) variables

Most powerful variables: p_T^{sys} ($\ell_1, \ell_2, E_T^{miss}, j_1$), $\Delta R(\ell_1, j_1) \& m(\ell_1, j_2)$

- 1 signal region with 1-jet b-tagged (1-jet 1-tag)
- 2 regions enriched in t
 :2 jets with either one (2-jet 1-tag) or both b-tagged (2-jet 2-tag)
- 2 regions enriched in other BGs.: 1-jet 0-tag & 2-jet 0-tag

NEW! ATLAS: Wt inclusive cross-section @ 8 TeV

TOPQ-2012-20 @ 20.3 fb⁻¹


The inclusive Wt production cross-section is measured from a simultaneous profile likelihood fit to the three BDT classifiers

> $\sigma_{Wt} = 23.0 \pm 1.3 \text{ (stat.)}^{+3.2}_{-3.5} \text{ (syst.)} \pm 1.1 \text{ (lumi.) pb}$ Total uncer. $^{+16}_{-17}\%$ Significance: 7.7σ (6.9σ exp.)

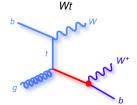
1-jet 1-tag (~ 20% of Wt)

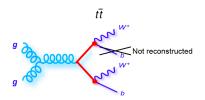
2-jet 1-tag (\sim 10% of *Wt*)

2-jet 2-tag (~ 3% of Wt)

Dominant uncertainties:

ISR/FSR (\sim 9%), jet uncertainties (\sim 10%), BG. normalisation (\sim 10%)


Carolina Gabaldon (LPSC)


Single top production at the LHC: other channels

NEW! ATLAS: Wt + tt fiducial cross-section @ 8 TeV

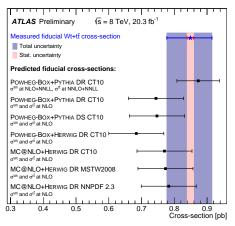
TOPQ-2012-20 @ 20.3 fb⁻¹

- In the 5-flavour number scheme, Wt process overlaps and interferes with tt at NLO
- Fiducial acceptance → physics objects constructed using stable particles to approximate the Wt detector acceptance:
 - Fiducial selection: Exactly 2 leptons with $p_T > 25$ GeV and $\eta < 2.5$, exactly one *b*-tagged jet with $p_T > 20$ GeV, $E_T^{miss} > 20$ GeV
 - Particle-level jets matched with nearby b-hadrons (p_T > 5 GeV) using the ghost tagging method
 - Includes Wt events
 - Includes *t* events for which one of the *b* quark was not reconstructed

Benefits of a fiducial measurement:

- Separation of experimental and theoretical uncertainties
- Reduce the dependence on the theory assumptions

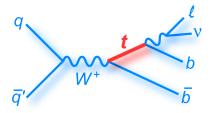
NEW! ATLAS: Wt + tt fiducial cross-section @ 8 TeV: results


TOPQ-2012-20 @ 20.3 fb⁻¹

- Selected Wt and tt events are split into two categories: in-fiducial and out-of-fiducial
- Fraction of in-fiducial events: 81% for Wt and 53% for tt
- Fiducial cross-section is measured by fitting the sum of the Wt and $t\bar{t}$ contributions to data in the 1-jet 1-tag region.

 $\sigma_{fid} = 0.85 \pm 0.01$ (stat.) $^{+0.06}_{-0.07}$ (syst.) ± 0.02 (lumi.) pb

(Total uncer. 8%)


Comparison of measured fiducial cross-section with theoretical predictions

Dominant uncertainties:

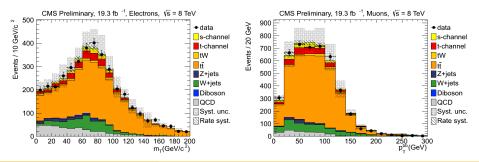
ISR/FSR (\sim 4.2%), jet uncertainties (\sim 5.2%)

s-channel: generic selection

Semileptonic *s*-channel signature:

- ✓ One isolated and high p_T lepton (e, μ)
- ✓ Two jets with high p_T and central $|\eta|$ originating from *b*-quarks
- ✓ Missing transverse energy (E_T^{miss}) from the neutrino

- ► The most challenging single top-quark process at the LHC → low cross-section and difficult to separate from backgrounds
- Main backgrounds: top pair production and W+jets
- Multivariate analyses based in two techniques: Boosted Decision Trees (BDT) and Matrix Element (ME) Method

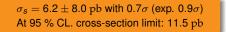

CMS: s-channel @ 8 TeV - using BDT

Specific selection:

- Single isolated lepton: $e(\mu)$ with $p_T > 24(27)$ GeV
- 2 central jets, 2 *b*-tagged, $p_T > 40$ GeV (other jets only if $p_T > 30$ GeV)

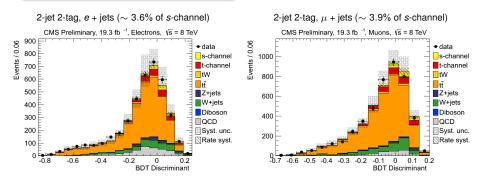
Analysis strategy

- One signal region (2-jet 2 b-tag) and one control region enriched in tt
 (3-jet 2 b-tag)
- Four BDT discriminants: Each region is separated in electron and muon channel
 - > 10 (11) highest ranking variables for the $e(\mu)$ channels
 - Most powerful: transverse W boson mass (m_T) in e ch. & vector sum of p_T of the 2 b-tagged jets (p_T^{bb}) in μ ch.



CMS-TOP-13-009 @ 19.3 fb⁻¹

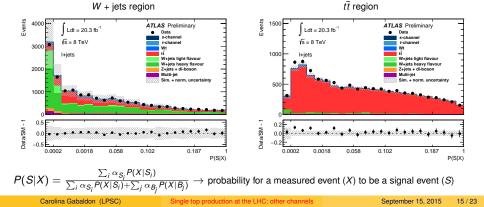
CMS: s-channel @ 8 TeV - Results


CMS-TOP-13-009 @ 19.3 fb⁻¹

- The s-channel production cross-section is measured from a binned maximum-likelihood fit to the four BDT classifiers
 - 3-jets, 2-tags regions allow to constrain the $t\bar{t}$ and W + jets BG.

Dominant uncertainties:

Factorization/renormalization scales (~ 83 %)



NEW! ATLAS: s-channel @ 8 TeV - using ME method (1)

Specific selection

ATLAS-CONF-2015-47 @ 20.3 fb⁻¹

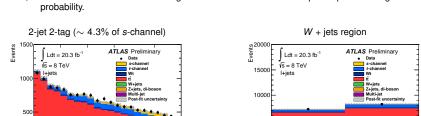
- Single isolated lepton with $p_T > 30 \text{ GeV } \& \eta < 2.5$
 - Veto events containing additional leptons with p_T > 5 GeV
- 2 central jets, 2 *b*-tagged, $p_T > 40(30)$ GeV for 1st (2nd) jet
 - Veto events involving additional jets with $p_T < 25 \text{ GeV}$
- $E_T^{miss} > 35 \text{ GeV } \& m_T^W > 30 \text{ GeV}$
- Analysis strategy
 - 1 signal region (2-jet 2 *b*-tag) & 1 validation region for $t\bar{t}$ & 1 control region to constrain W+jet BG.

Carolina Gabaldon (LPSC)

Data/SM - 1

0.0002 0.0018

signal region


Single top production at the LHC: other channels

s-channel cross-section from binned maximum likelihood fit of the ME discriminant in the

the lepton charge in the W + jets control region is included into the fit to constrain the W+jets BG.

September 15, 2015 16/23

Lepton Charge

5000

Data/SM - 1 0.02 0.00 -0.02

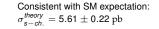
NEW! ATLAS: s-channel @ 8 TeV - using ME method (2)

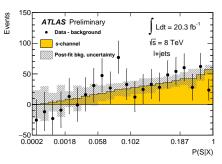
ATLAS-CONF-2015-47 @ 20.3 fb⁻¹

The ME Method is used to separate the signal from the background

0.187 P(SIX)

ME discriminant is extracted using theoretical calculations to compute a per-event signal


0.058 0.102


NEW! ATLAS: s-channel evidence @ 8 TeV - Results

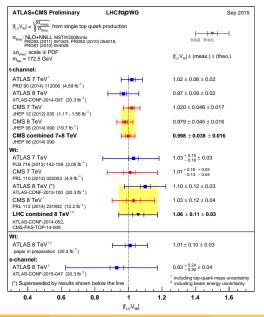
 $\sigma_s = 4.8 \pm 1.1 \text{ (stat.)}^{+2.2}_{-2.0} \text{ (syst.)pb}$ Significance: $3.2\sigma \text{ (exp. } 3.9\sigma \text{)}$

Туре	$\pm \Delta \sigma / \sigma$ [%]
Data statistics	22.1
MC statistics	17
Jet energy resolution	17
<i>t</i> -channel generator	15
s-channel generator scale	11
b-tagging	11
W+jets normalization	9
Luminosity	7
t-channel normalization	7
Jet energy scale	6
PDF	3
Lepton identification	3
$t\bar{t}$ generator	2
Electron energy scale	2
Lepton trigger	2
Charm tagging	2
Other	< 1
Total	49

ATLAS-CONF-2015-47 @ 20.3 fb⁻¹

First EVIDENCE of the *s*-channel production at LHC

V_{tb} | measurements

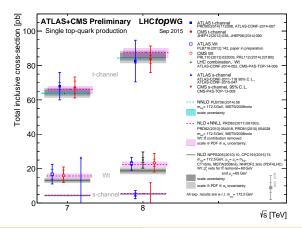

- Direct determination of the quark mixing matrix element $|V_{tb}|$:
 - Opportunity to test the unitarity of the CKM matrix
 - Deviations from the SM are potentially sensitive to new physics or radiative corrections through anomalous coupling contributions
- Measure $|V_{tb}|$ assuming left-handed SM-like W-t-b coupling and $|V_{tb}| >> |V_{ts}|, |V_{td}|$:

$$|V_{tb} \cdot f_{LV}|^2 = \frac{\sigma^{obs.}}{\sigma^{theory}}$$
 with $f_{LV} = 1$ in SM

Summary of the $|V_{tb}|$ measurements and limits in the *Wt* and *s*-channel:

Channel	Experiment	Reference $ V_{tb} \cdot f_{LV} $ Limit at 95 % C.L.
t-channel	CMS	JHEP06 (2014) 090 \mid 0.98 \pm 0.05 (5%) \mid
Wt	ATLAS	ATLAS-CONF-2013-100 $ 1.10 \pm 0.12 (11\%) V_{tb} > 0.72$
Wt	CMS	PRL 112 (2014) 231802 \mid 1.03 \pm 0.13 (12%) \mid \mid \mid $V_{tb} \mid$ > 0.78
Wt	ATLAS & CMS	ATLAS-CONF-2014-052 \mid 1.06 \pm 0.11 (10%) \mid \mid $ V_{tb} $ > 0.79
Wt	ATLAS	TOPQ-2012-20 $1.01 \pm 0.10 (10\%)$ $ V_{tb} > 0.80$
s-channel	ATLAS	ATLAS-CONF-2015-47 \mid 0.93 $^{+0.24}_{-0.30}$ (\sim 32%) \mid \mid $ V_{tb} > 0.4$

Summary of $|V_{tb}|$ measurements at 7 & 8 TeV

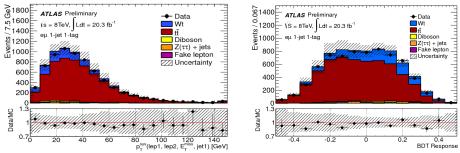

Carolina Gabaldon (LPSC)

Conclusions

- LHC experiments delivered many results in single top final states with Run-1 data
 - Single top-quark production has been observed in association with a W boson by ATLAS & CMS
 - The Wt cross-section has been measured with a precision of 23% in CMS & 17% in ATLAS
 - First fiducial cross-section measurement by ATLAS in the Wt fiducial acceptance
 - First evidence of the s-channel by ATLAS

All measurements are so far consistent with the SM predictions

No sign of new physics has been found yet


BACKUP

ATLAS: Wt cross-section @ 8 TeV - only e_{μ} channel

Specific selection - only $e\mu$ channel

ATLAS-CONF-2013-100 @ 20.3 fb⁻¹

- Leptons with $p_T > 25 \text{ GeV } \& 1 \text{ or } 2 \text{ central jets}, 1 \text{ b-tagged}, p_T > 30 \text{ GeV}$
- Analysis strategy
 - One enriched signal region (1-jet 1 *b*-tag) and one control region (2-jets \geq 1-tag)
 - Two BDT discriminants: 19 highest-ranking variables for 1-jet 1-tag and 20 for the 2-jet \geq 1-tag

- The Wt cross-section is measured from a maximum likelihood fit to BDT classifiers.
 - 2-jet control region constrains the tt background uncertainties
 - Impact of systematic uncertainties is evaluated using ensembles of pseudo-experiments

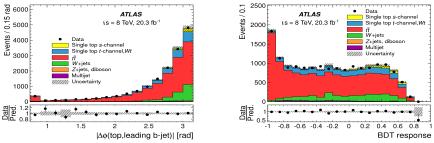
 $\sigma_{Wt} = 27.2 \pm 5.8 \text{ pb} (\sim 21\%)$ Significance: 4.2 σ (4.0 σ exp.)

modeling (\sim 8 %) and *b*-tagging (\sim 9 %)

Carolina Gabaldon (LPSC)

Single top production at the LHC: other channels

ATLAS: s-channel @ 8 TeV - using BDT


Specific selection:

PLB 740 (2015) 118 @ 20.3 fb⁻¹

- Single isolated lepton with $p_T > 30 \text{ GeV}$
- 2 central jets, 2 *b*-tagged, p_T > 30 GeV (other jets only if p_T < 25 GeV)

Analysis strategy

- One signal region (2-jet 2 b-tag) and two control regions to validated the BG. modeling.
- One BDT discriminant: 19 highest-ranking variables
 - Most powerful: $\Delta \phi$ between top from 2^{*nd*} *b*-jet and 1^{*st*} *b*-jet & lepton $p_T + E_T^{miss}$

s-channel cross-section → binned maximum likelihood fit to BDT distribution.
 Impact of systematic uncertainties is evaluated using ensembles of pseudo-experiments

 $\sigma_s = 5.0 \pm 4.3 \text{ pb}$ with 1.3σ (1.4σ exp.) At 95 % CL. cross-section limit: 14.6 pb Dominant uncertainties:

- E_T^{miss} scale (~ 80 %)

Carolina Gabaldon (LPSC)

Single top production at the LHC: other channels