HG2006

Monday, 25 September 2006 - Wednesday, 27 September 2006 CERN European Organization for Nuclear Research

Book of Abstracts

Contents

RF breakdown and pulsed surface heating tests of different materials	1
Pulsed heating/superconducting cavity set-up	1
CLIC structure testing results	1
Waveguide and single cell experiments	1
The Two-beam Test-stand in CTF3	1
The Yale/Omega-p 34 GHz test facility	1
Developments in rf breakdown theory since AAC06	1
Traveling-wave breakdown limit scaling	2
Dielectric multipactor calculations	2
Breakdown theory	2
Active RF pulse compression	2
Tungsten development	2
Some HG RF Issues in a HOM Polarized RF Gun for the ILC	2
Pulsed surface heating: Ultrasonic and Laser fatigue experiments	2
Pulsed surface heating: laser fatigue experiments	3
DC spark testing	3
RF breakdown and pulsed surface heating tests of different materials	3
3 and 30 GHz conditioning control software	3
High Frequency and High Field Studies at KEK	3
Introductory remarks	3
RF driven and beam-driven high-gradient test of dielectric structures	4
Electron microscopy analyses of CLIC Study structures exposed to RF	4
Status report of JINR-IAP-CLIC experiment on the copper cavity heating	4

rf acquisition system for CLIC high Gradient testing	4
What to do with a high gradient	4
High Voltage DC testing in the framework of a low emittance gun development	4
Breakdown theory	4
Experiment on metal surface damage using 120 keV beam	5
Proposal to Study Dark Current Using X-band RF Gun	5
Open discussion	5
Beta Enhancement Studies with an RF Photocathode Gun	5

5

RF breakdown and pulsed surface heating tests of different materials

Corresponding Author: jay.hirshfield@yale.edu

High-gradient rf experiments and results / 6

Pulsed heating/superconducting cavity set-up

Corresponding Author: tantawi@slac.stanford.edu

High-gradient rf experiments and results / 7

CLIC structure testing results

Corresponding Author: alberto.rodriguez@cern.ch

High-gradient rf experiments and results (cont.) / 8

Waveguide and single cell experiments

Corresponding Author: dolgash@slac.stanford.edu

Reports on facilities and from collaborations and projects / 10

The Two-beam Test-stand in CTF3

Corresponding Author: magnus.johnson@cern.ch

Reports on facilities and from collaborations and projects / 11

The Yale/Omega-p 34 GHz test facility

Corresponding Author: jay.hirshfield@yale.edu

Theory and computation / 12

Developments in rf breakdown theory since AAC06

Corresponding Author: pwilson@slac.stanford.edu

Theory and computation / 13

Traveling-wave breakdown limit scaling

Corresponding Author: walter.wuensch@cern.ch

14

Dielectric multipactor calculations

Corresponding Author: jp@hep.anl.gov

15

Breakdown theory

Corresponding Author: norem@anl.gov

Specialized experiments. / 16

Active RF pulse compression

 $\textbf{Corresponding Author:}\ tantawi@slac.stanford.edu$

High-gradient technology, materials and processing / 17

Tungsten development

Corresponding Author: laurent@slac.stanford.edu

Specialized experiments / 18

Some HG RF Issues in a HOM Polarized RF Gun for the ILC

Corresponding Author: jywap@slac.stanford.edu

Specialized experiments / 19

Pulsed surface heating: Ultrasonic and Laser fatigue experiments

Corresponding Author: samuli.heikkinen@cern.ch

20

Pulsed surface heating: laser fatigue experiments

Corresponding Author: sergio.calatroni@cern.ch

Specialized experiments. / 21

DC spark testing

Corresponding Author: trond.ramsvik@cern.ch

High-gradient technology, materials and processing (cont.) / 22

RF breakdown and pulsed surface heating tests of different materials

Corresponding Author: jay.hirshfield@yale.edu

High-gradient technology, materials and processing $/\ 23$

3 and 30 GHz conditioning control software

 $\textbf{Corresponding Author:} \ a lexey. dubrovskiy@cern.ch$

Reports on facilities and from collaborations and projects / 24

High Frequency and High Field Studies at KEK

Corresponding Author: shuji.matsumoto@kek.jp

High-gradient rf experiments and results / 25

Introductory remarks

Corresponding Author: jean-pierre.delahaye@cern.ch

High-gradient rf experiments and results (cont.) / 26

RF driven and beam-driven high-gradient test of dielectric structures

Corresponding Author: jp@hep.anl.gov

High-gradient technology, materials and processing (cont.) / 27

Electron microscopy analyses of CLIC Study structures exposed to RF

Corresponding Author: gonzalo.arnau.izquierdo@cern.ch

High-gradient rf experiments and results (cont.) / 28

Status report of JINR-IAP-CLIC experiment on the copper cavity heating

Corresponding Author: snsed@sunse.jinr.ru

High-gradient technology, materials and processing (cont.) / 29

rf acquisition system for CLIC high Gradient testing

Corresponding Author: raquel.fandos@cern.ch

Specialized experiments / 30

What to do with a high gradient

Corresponding Author: john.ellis@cern.ch

Specialized experiments. / 31

High Voltage DC testing in the framework of a low emittance gun development

Corresponding Author: frederic.le.pimpec@xfel.eu

Theory and computation / 32

Breakdown theory

Corresponding Author: norem@anl.gov

High-gradient technology, materials and processing / 33

Experiment on metal surface damage using 120 keV beam

Corresponding Author: dolgash@slac.stanford.edu

General discussion / 34

Proposal to Study Dark Current Using X-band RF Gun

Corresponding Author: dolgash@slac.stanford.edu

General discussion / 35

Open discussion

Corresponding Author: steffen.doebert@cern.ch

General discussion / 36

Beta Enhancement Studies with an RF Photocathode Gun

Corresponding Author: jp@hep.anl.gov