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Superconducting rf is of increasing importance in particle accelerators. We 
have developed a resonant cavity with high quality factor and an
interchangeable wall for testing of superconducting materials. A compact TE01
mode launcher attached to the coupling iris selectively excites the azimuthally 
symmetric cavity mode, which allows a gap at the detachable wall and is free 
of surface electric fields that could cause field emission, multipactor, and rf 
breakdown. The shape of the cavity is tailored to focus magnetic field on the 
test sample. We describe cryogenic experiments conducted with this cavity. 
An initial experiment with copper benchmarked our apparatus. This was 
followed by tests with Nb and MgB2. In addition to characterizing the onset of 
superconductivity with temperature, our cavity can be resonated with a high 
power klystron to determine the surface magnetic field level sustainable by the 
material in the superconducting state. A feedback code is used to make the 
low level RF drive track the resonant frequency.  We will also use our 
resonant cavity design to study the effects of high power pulsed heating on 
normal conducting surfaces.
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The Mushroom Cavity
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Features:
•No surface electric fields (no multipactor)

•Magnetic field concentrated on bottom (sample) 
face (75% higher than anywhere else)

•Purely azimuthal currents allow demountable 
bottom face (gap).

Why X-band (~11.424 GHz)?:

•high power & rf components available

•fits in cryogenic dewar

•small (3”) samples required
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6.8% mode separation for 
axisymm. TE modes.

4.0% mode separation from 
axisymm. TM mode.

1.4% mode separation from 
non-axisymm. mode.

Other Nearby Resonance Modes:
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Mechanical Design

Sample Dimensions

ss Conflat flanges

G. Bowden



WR90-WC150 Compact High-Purity  
TE01 Mode Launcher

height taper 
(.400”→.800”)
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mode converter

cavity
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“Cold” Tests (Room Temperature)

HP 8510C Network Analyzer
Nb sample mounted in bottom flange

room temp. measurements



Phase slew due to input waveguide, determined from a 50 MHz measurement is 
subtracted from 1 MHz data.

A “Q circle” is fit to the corrected S11 data in the complex plane to determine fr, β, and QL
are determined.  

From these Q0 and Qe are derived.

Processing Cold Test Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.1

0

0.1

0.2

0.3

0.4

0.5

Real

Im
ag

in
ar

y

11.415 11.4152 11.4154 11.4156 11.4158 11.416 11.4162
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

frequency (GHz)

|S
11

|

11.39 11.4 11.41 11.42 11.43 11.44 11.45
-150

-100

-50

0

50

100

150

200

Frequency (GHz)

S
11

 P
ha

se
 B

ef
or

e 
(b

lu
e)

 a
nd

 A
fte

r (
gr

ee
n)

 C
or

re
ct

io
n

Temperature measured with a carbon-glass resistor (low end) inserted into a hole in 
bottom of cavity and from frequency shift (higher temperatures).

Complex S11 is measured with 1601 points in 1 megaherz around resonance.
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9.3 K
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Transition of Cavity Q During Warmup
from Liquid He Temperature
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Needed Power

H field along radius of bottom face

56.76%

U=8.72265×10-17 J

|Hmax|2 = 4.1048×10-6 A2/m2

|Hmax|2 = AU

→ A = 4.7059×1010 A2/m2/J

If |Bc|=180 mT, then |Hc|=143.25 
kA/m, 

→Uc ≈ 0.43607J = 8.754×10-7s Pc 
for a 1.5 μs flat input pulse. 

→ Pc ≈ 498 kW
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New test setup for inexpensive accurate characterization of high-field RF properties of materials 
and processing techniques
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High Power Testing
An initial high power experiment was performed, but data has not yet been fully 
analyzed.

A feedback code is used to make the low level RF drive track the resonant frequency 
by flattening the phase during cavity discharge. 

Quenching of Nb sample seen as a roll off of Q as power was raised.

Our experimental setup is still maturing.  We will add a high-power circulator to 
isolate the klystron from the cavity reflection.  We will also add a silicon diode and a 
Cernox temperature sensor. 

We will soon test a sample of MgB2 provided by T. Tajima et al. of Los Alamos.  This 
material is supposed to have an order of magnitude lower surface resistance than 
niobium at 4K and a critical temperature of ~40K, compared to 9.2K for niobium.



Pulsed Heating
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Our cavity design also recommends itself to pulsed heating experiments (á la Pritzkau and 
Siemann).  

We will conduct a set of such experiments, using a second cavity designed to be nearly 
critically coupled at room temperature.  

These will be done in collaboration with W. Wuench, et al. of CERN, who will provide 
samples of copper, copper zirconium, etc.
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11.92 MW → 100°C

Cu parameters held constant in this calculation.

(Pritz. (3.34))

We have plenty of power to create pulsed heating temperature rises on the order of 100 °C.



Conclusions

•We have designed and fabricated a compact, high-Q rf cavity 
optimized for economically testing the rf properties of material 
samples and their dependence on temperature and field by means 
of frequency and Q monitoring.

•We’ve performed low power cryogenic tests with copper and 
niobium samples.

•High power tests are under way.

•A similar cavity will be used for pulsed heating material testing.


