Traveling wave breakdown limit scaling and Some thoughts on the mechanism which gives the breakdown rate

W. Wuensch HG2006 25-9-2006

My personal view of the main theoretical questions

• How does a breakdown start? Trigger mechanism. Two main ideas – electron emission and tensile strength. J. Norem's team simulates the latter. Both ideas predict βE limit of material, but β is never derived.

• What are the breakdown dynamics? rf/plasma interaction. V. Dolgashev simulates breakdown and rf. P. Wilson has elaborate theory based on plasma spots. Predicts ordering of materials for ultimate gradient and gives pulse length dependence. S. Doebert and T. Ramsvik also have made material orderings.

•How do structure parameters enter into it? Surface field limits are commonly considered. W. Wuensch has theory with a power flow limit which predicts gradient relationship between different types of structures made of the same material. V. Dolgashev has simulated rectangular waveguides.

• What gives the breakdown rate and apparent material dependence? W. Wuensch has proposal that breakdown sites are subject to cyclical tensile stress and fatigue.

• What is conditioning and how best to do it? How does effect of breakdown affect breakdown trigger?

The case for a material dependent rfbreakdown limit scaling of

C P τ^α

- *P* is power flow,
- *τ* is pulse length,
- *C* is the smallest structure circumference
- *α* is empirically determined with values around 1/2 (Mo) to 1/3 (Cu).

Physical arguments ^{•Power} flows in a thin layer
above structure irises. •Melted spots left by breakdown are small compared to the iris circumference as are images of light. •Energy to melt spot small compared to total pulse energy.

•Melted spots evolve into damage.

•Power density available to feed discharge above spot of fixed transverse dimension is P/C.

•Surface field only needs to be high enough to *initiate* breakdown.

•Above a certain threshold the effect of the breakdown on the surface geometry is greater than on the field holding capability – material dependent saturation.

General observations

•Discharge is a fixed-sized small antenna that can only couple to a small fraction of the incoming power/energy.

•Inspired by ablation limit argument communicated to me by V. Dolgashev. This is where the ^τ to the something comes from.

•Consistent with the observation at X-band that lower v ^g structures tolerate higher surface electric fields (C. Adolphsen).

•Basic difference with v_g reasoning is that power fed into a breakdown
is given by a geometrical argument rather than an impedance matching argument.

•Circumference argument also makes a prediction about frequency dependence.

30 GHz data taken at the conditioning limit

Analysis of waveguide data from experiment of V. Dolgashev and S. Tantawi

X-band accelerating structure data

HDS60 at 10-3 breakdown rate and 70 ns

…and then some significant differences emerge

Circular and HDS60 10-3 breakdown rate and 70 ns

Where could the difference come from?

- HDS power flow concentration
- Iris thickness, circular 0.85 and HDS 0.55
- phase advance
- structure preparation

Breakdown probability: observed material dependence of slope

Breakdown rate and fatigue

Breakdown triggers involve induced stress: tensile strength and heating (D. Schulte).

Induced stress goes down with field, so fatigue S/N curve gives breakdown probability .

Alloying could then give strong influence, if properties survive breakdown. Mo sonotrodes are under test, S. Heikkinen. We will see if behavior is reproduced.

rotated breakdown probability Laser and ultrasonic fatigue data