Update on RF Breakdown Theory Since AAC06

Effect of backscattering

A fraction of the electrons incident on a metal surface are backscattered. The backscattering coefficient b depends only on the atomic number Z and is given by

$$\mathbf{B} = \mathbf{A} + \mathbf{B}\mathbf{Z} + \mathbf{C}\mathbf{Z}^2 + \mathbf{D}\mathbf{Z}^3$$

where $A = -5.23791 \times 10^{-3}$, $B = 1.5048371 \times 10^{-2}$, $C = -1.67373 \times 10^{-4}$, and $D = 7.16 \times 10^{-7}$. The fraction of electrons transmitted into the metal is 1–b.

For a metal surface bombarded by electrons with a power density per unit area P_A , the temperature rise at time t_0 is

$$T = \frac{P_A}{X_0 C_S \rho} \int_0^{t_0} erf\left\{\frac{X_0}{\left[4D(t_0 - t)\right]^{1/2}}\right\} dt$$

To take backscattering into account, P_A must be multiplied by 1–b.

Without backscattering, the surface field at breakdown scales as (AAC06 paper)

$$E_b \sim \left[\frac{T_m C_s}{\left(I/t_0\right)} + H\right]^{1/2}$$

To take backscattering into account, this expression must be multiplied by the factor $1/(1-b)^{1/2}$. The table below shows the effect of taking backscattering into account for selected metals.

Element Z		Breakdown Field-	Transmission	Breakdown Field–
		No backscattering	Factor 1–b	with backscattering
Cu	29	1.0	0.69	1.0
W	74	1.20	0.52	1.39
SS	26	1.21	0.72	1.19
Nb	41	1.21	0.62	1.28
Mo	42	1.28	0.62	1.36
Ti	22	1.32	0.7	1.27
Cr	24	1.39	0.73	1.37
Be	4	2.53	0.95	1.88
С	6	~4	0.92	~3.5

1.00-1.09	1.10–1.19	1.20–1.29	1.30–1.39	> 1.4
Cu 1.00	Al 1.10	Co 1.22	Re 1.31	Be 1.88
Ca 1.06	Mn 1.10	Os 1.27	Ru 1.31	
Tc 1.08	Zr 1.12	Ti 1.27	Mo 1.36	<u>Non-metals</u>
	Y 1.14	Nb 1.28	Cr 1.37	B 2.17
	Rh 1.15	Sc 1.29	V 1.37	C 3.55
	Ta 1.16		W 1.39	
	Mg 1.16			
	Fe 1.17			
	Ni 1.18			
	SS 1.19			
	Ir 1.19			

TABLE 2. Breakdown Fields Normalized to Copper for Various Metals

FIGURE 4. The breakdown field groups in Table 2 plotted on a periodic table of the elements

Taylor Cones

From Jon Orloff, *High Resolution Focused Ion Beams*, RSI 64, 1105 (1993):

"A LMIS (liquid metal ion source) consists of a liquid metal held in some suitable way to which an electric field is applied strong enough to cause the metal to assume a conical shape---".

"The cone apex is believed to have a radius of only about 5nm"

