High Voltage DC Breakdown of Technical Surfaces at PSI

F. Le Pimpec R. Ganter PSI

High Gradient Workshop CERN, September 2006

HG2006 - Workshop

26.09.2006

What materials for the (broad) electrodes ?

- Take the literature (~100 years of research)
- Take the most cost efficient material found
- Mirror finish the material, prepare it, install it
- That should work !!!

W.Diamond JVSTA 1998	Cu	Ti	Al		Nell Not Quily
No FE (MV/m) 1 mm gap	70	60	85	92	
Breakdown (MV/m) 1 mm gap	80	75	90	95	

PAUL SCHERRER INSTITUT

Electrodes choice

Elements	SEY _{max}	Atm/Ar _{inc} (@500eV)	Self Sputter rate @ 500 eV	Young Modulus GPA	Melting Point T °C
Cu	1.3	2 (2.7)	> 1	110	1083
Al	1.0	1.05 (1.3)	< 1	69	660
Au	1.4	2.4	> 1	78	1063
Ti	0.9	0.5 (0.6)	< 1	116	1668
Мо	1.25	0.6 (0.9)	< 1	329	2610
Zr	1.1	0.65	< 1	68	1852
Nb	1.2	0.6	< 1	105	2415
Fe	1.3	1 (SS 1.3)	~1	200	1536

Cu material of choice for accelerators - excellent elect & therm cond

SS – Mo – W did give good results in RF induced breakdown (Au bad...)

Ti : "refractory" – good mechanical properties – low SEY – lousy elect & therm cond 26.09.2006 – Workshop F. Le Pimpec 5

Dark Current test stand

Finding "quickly" a material and a process that could be used & implemented for the 500 kV pulser electrodes – Get a clue in how to process materials with HG

Flat disk cathode Ra<0.2 (200nm)

Mushroom Anode Ra<0.2 (200nm)

Mechanical comparator to measure the Gap between the electrodes

<P> ~2.10⁻⁹ Torr after a light bakeout Mid 10 scale after a more thorough bake

Electrodes preparation and Installation

The electrodes are not mirror like finish, machining marks and "scratches" can be seen. All electrodes have been ultrasonically cleaned in an alcohol bath – Acetone was occasionally used beforehand !

Installation is done with normal UHV care – No clean room – why being so cavalier ?

After N_2 /air venting system is fully baked at 170C for 24hour After plasma glow discharge with noble gas (He , Ar); the IP is baked overnight

Overall P not significant if below ~10⁻⁸ Torr

Electrodes testing

Cathode	Anode	As	Plasma	n th
		received	He - Ar	Plasma
SS	SS	Y	Y	"Y"
Al	Al	Y	Y	Y
Al mirror Fnshd	Al (sme as abv)	Y	Y	Y
Cu oxdzd	Cu oxdzd	-	Y	Y
Cu Polynox TM	Cu Polynox TM	Y	Y	-
Ti	Ti	Y	Y	Y
Mo (vac fired)	Mo (vac fired)	Y	Y (Ar)	Y
Ti (vac fired)	Ti(vac fired)	Y	Y (Ar)	Y
Cu mirror Fnshd	Mo (vac fired)	Y	Y (Ar)	Y
Nb	Nb	Currently	_	-

Pure material or alloy like CuZr, CuCrZr, TiAl?

Implant N to harden material (after all I have 100kV to do so)!

PAUL SCHERRER INSTITUT

Results: Typical – Al – SS cathode after a differential He-Ar plasma A

26.09.2006

HG2006 - Workshop

F. Le Pimpec 9

PAUL SCHERRER INSTITUT

Results : Ti

26.09.2006

HG2006 - Workshop

F. Le Pimpec 10

26.09.2006

Results Summary : Before and After breakdown Stable Field (MV/m) Obtained at 1 mm Gap

	Al - Al		Al mirror finished - Al			
State / Dark Current	< 0.05 nA	1 nA	< 0.05 nA	1 nA		
As Received	-	7.5	36 (2 mm)	29		
After Plasma	52	30	73 (stable)	31		
			(92 at 750 μ m)			

Mirror finished AI cathode ($Ra \le 3nm$) - re-use of the damaged AI anode

Cu clean : cleaned with phosphoric acid solution

Cu – Mo : Cu is mirror finished - re-use of the damaged Mo anode (as it seems breakdown is cathode initiated (Al results))

	Cu oxidized			Cu clear	n	Cu-Mo		
State / Dark Current	< 0.05 nA	1 nA	$^{\prime}$	0.05 nA	1 nA	< 0.05 nA	1 nA	
As Received	-	-		24	26	18.2 (*)	13.8 (*)	
After Plasma	32	29.3		55	19	21.6	25.4	

(*) at 3mm gap

Results Summary 2: Before and After breakdown Stable Field (MV/m) Obtained at 1 mm Gap

Mo electrodes (Vac fired)			Т	ī	Ti (vac fired)		
Dark Current	< 0.05 nA	1 nA	Dark Current / State	< 0.05 nA	1 nA	< 0.05 nA	1 nA
/ State			As Received	50	46.6	29.6	32.5
As Received	37	45.2				_,	
After Plasma	44	61.3	After Plasma	63	67 (0.1nA)	39	41.4

Spark processing in order to get the gradient shown

SS

Heating treatment tend to improve HV holding. A problem with a vacuum furnace, and you will get disappointing results. best material so farDark Current
/ State< 0.05 nA</td>1 nAAs Received4042.5After Plasma6835

Electrodes Damages

Mo (vac fired) cathode

Al mirror finished cathode

Cu cathode

Ti cathode

Damages on vacuum fired Mo

FED

Some criticism...

Data can be fitted with FN law - No Study of the β variation vs treatment !

$$I = A \cdot \frac{1.5 \cdot 10^{-6}}{\Phi} E_s^2 \cdot e^{\frac{10.4}{\sqrt{\Phi}}} \cdot exp \ (\frac{-6.83 \cdot 10^7 \Phi^{\frac{3}{2}}}{E_s})$$

Sure but during treatment the work function will change. Φ varies with the chemistry and the crystal orientation, and on broad electrodes contaminants, what means comparing β then ?

Procedure used is repetitive and comparable, but the experiment is in some way not controlled !

True ! System looks stable (a day) and a breakdown might happen and cure itself or kill the electrodes when no one watch over ! – Cure : get a feedback ! We won't do it ! The pulser is the next "test stand" and will be fully interlocked

Surely there are some more...

Electrode Processing : Conclusions

Patience over time is a key ingredient to get those field – current value drift from a given set point, can be important ! That doesn't lead necessary to breakdown ...

For hard events, damages can be irreversible. No plasma recovery !!

Material (at 1mm gap)	SUS/SS	Cu	Ti	Mo	Mo-Ti	Al	Nb
Furuta et al. (1 nA)	36	47.5	88	84	103	-	-
Diamond (no FE)	-	70	60	-	-	85	92
This work (<0.05 nA)	68	55	63	44	-	73	-

Noble gas plasma looks like an efficient way to get or recover the gradient "without" dark current. Other plasma can be efficient, but beware of the chemistry !

Combination of Mirror finished electrodes, and Noble plasma treatment should be a good combination to reach higher gradient (no great discovery there)

26.09.2006

HG2006 - Workshop

Acknowledgement

- R. Betemps
- Kugler GMBH for providing the mirror finished surfaces