What to do with a High Gradient

The short answer is: Physicists (always) want more energy but Politicians will not give us more money

The Physics Case for Higher Energy

- Why an e^+e^- collider with $E_{CM} = 3$ to 5 TeV?
- A significant step beyond the LHC/ILC for precision measurements at high energies
 - Complete study of the Higgs boson(s)?
 - Supersymmetric spectra?
 - Deeper probes of extra dimensions?
 - New gauge bosons, excited quarks, leptons?
- More to add, whatever the LHC offers

CLIC Physics Studies 1987 – now: see hep-ph/0412251

If there is a light Higgs boson ...

- Large cross section @ high energy
- Measure rare Higgs decays unobservable at LHC or a lower-energy e⁺ e⁻ collider

If there is a light Higgs boson ...

- Large cross section *a* high energy
- Measure rare Higgs decays unobservable at LHC or a lower-energy e⁺ e⁻ collider
- Could measure the effective potential with 10% precision

Measure Effective Higgs Potential

Large cross section for HH pair production

Accuracy in measurement of HHH coupling

If there is a light Higgs boson ...

- Large cross section @ high energy
- Measure rare Higgs decays unobservable at LHC or a lower-energy e⁺ e⁻ collider
- Could measure the effective potential with 10% precision
- Could search indirectly for accompanying new physics up to 100 TeV
- Could identify any heavier partners

Do not assume that the Higgs is light

Higgs + Higher-Order Operators

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^p} \mathcal{O}_i^{(4+p)}$$

Precision EW data suggest they are small: why?

Corridor to heavy Higgs?

 $c_{WB} = -1$

Dimension six operator	$c_i = -1$	$c_i = +1$
$\mathcal{O}_{WB} = (H^+ \sigma^a H) W^a_{\mu\nu} B_{\mu\nu}$	9.0	13
$\mathcal{O}_H = H^+ D_\mu H) ^2$	4.2	7.0
$\mathcal{O}_{LL} = \frac{1}{2} (\bar{L} \gamma_\mu \sigma^a L)^2$	8.2	8.8
$\mathcal{O}_{HL} = i(H^+ D_\mu H)(\bar{L} \gamma_\mu L)$	14	8.0

95% lower bounds on Λ/TeV

But conspiracies are possible: m_H could be large, even if believe EW data ...?

Do not discard possibility of heavy Higgs

If the Higgs boson is heavier ...

When will the LHC discover the Higgs boson?

What is Supersymmetry (Susy)?

- The last undiscovered symmetry?
- Could unify matter and force particles
- Links fermions and bosons $\begin{array}{l} Q|Boson> = |Fermion> \\ Q|Fermion> = |Boson> \end{array}$
- Relates particles of different spins
 - $0 \frac{1}{2} 1 \frac{3}{2} 2$

Higgs - Electron - Photon - Gravitino - Graviton

• Helps fix masses, unify fundamental forces

Other Reasons to like Susy

12.4

It stabilizes the Higgs potential for low masses

Sparticles may not be very light

If the LHC discovers supersymmetry ...

- Could complete the spectrum
- Could make many novel, detailed measurements
- Cast light on mechanism of supersymmetry breaking?
- Open a window on string physics?

LHC Scapabilities... and OtherAccelerators

gluino sleptons squarks Η χ **Post-WMAP Benchmarks** LHC LC 0.5 TeV Nb. of Observable Particles 30 30 20 20 10 10 LBGICJHMAEFKD LBGICJHMAEFKD LC 1.0 TeV HC+LC TeV 30 30 20 20 10 100 LBGICJHM CJHMAEFKD E FKD LBGI CLIC 3 TeV CLIC 5 TeV 30 30 20 20 10 10 0 LBGI CJHMA E F

LHC almost `guaranteed' to discover supersymmetry if it is relevant to the mass problem

Ca 100.1

Implications of LHC Search for ILC

If the LHC discovers extra dimensions

Mini-black hole at 3 TeV

Easily distinguishable from Standard Model background

Could measure Kaluza-Klein excitations

Direct-channel resonances

Angular distribution in graviton decay

	10	Pro	cess L	C LI	HC SI	LHC	3	5 TeV	
			Squarks	2.5	0.4	3	1.5	2.5	N.H.
			Sleptons	0.34	0.4		1.5	2.5	
Contraction of the	Physics Popehor		New gauge boson Z'	5	8	6	22	28	
	Of		T ' 1 1 ×	~ -				_	
	Various	1	Excited quark q* Excited lepton l*	6.5	0.8	7.5	3	5	
	Colliders	S		3.4	0.8		3	5	
A STATE AND A STATE OF		Į	Two extra space dimensions	9	5–8.5	12	20-35	30–55	A Star
	1 sol	25	Strong WLWL scattering	2σ	-	4σ	70 o	90σ	
			Triple-gauge Coupling(TGC) (95%)	.0014	0.0004	0.0006	0.00013	0.00008	Ser H

Integrated luminosities used are 100 fb–1 for the LHC, 500 fb–1 for the 800 GeV LC, and 1000 fb–1 for the SLHC and high-energy LC. Most numbers given are TeV, but for strong W_LW_L scattering numbers of standard deviations, pure numbers for the triple gauge coupling (TGC).

Conclusions

- Unique physics @ energy frontier
- Beamstrahlung and backgrounds not insurmountable problems
- Can exploit fully high c.o.m. energy
- Added value for light Higgs, heavy Higgs, supersymmetry, extra dimensions, ...

Meta-Conclusions

- The LHC will define the future course of high-energy physics
- All scenarios best explored by a highenergy e⁺ e⁻ collider
- Should have widest possible technology choice when LHC results appear
- Determine feasibility of high gradient by the end of this decade