β Enhancement Studies with an RF Photocathode Gun

John Power HG2006

ANL/SLAC collaboration

Macroscopic β Measurements

Problem

- 1. Relationship between β and the surface features is not known
- 2. Number and spatial distribution of the emitters is not known.

Dark Current Images from an RF Photocathode Gun

Use solenoids to make an image of the dark current at YAG screen

streaks \rightarrow emitter site

dark current image Jang-Hui Han, Ph. D. Thesis

Microscopic β measurements

Surface Analysis of the emitter site

Surface feature (Geometric or Impurity)

Local β measurement (Light Intensity vs. field)

1.3 GHz RF Photocathode Gun at the AWA

Plan: Commission Spring 2007??

- Removable cathode
 - Test Different Materials
 - Test Different Surface Preparation
- Diagnostics & Tools
 - High Resolution images of YAG-screen and Photocathode
 - Standard diagnostics available: energy, faraday cup, streak camera, etc.
 - Laser (248 nm, 372 nm, 744 nm) available to trigger a breakdown