Simulation Status Report and Plans

A. Morsch

ALICE Offline Week 19/11/2014

Overview

- Geant4 Validation and Multi Threading Tests
- Geometry
 - Parallel Navigation
 - Refinements
 - Detector Upgrade

Geant4 Transition

Factorized Strategy

Physics Validation with AliRoot

- Geant4 interfaced via Virtual Monte Carlo (VMC) + TGeo Multi Threading Performance tests with thread safe VMC application
 - Based on standard geant4_vmc example
 - Use reduced set of AliRoot features allowing for realistic performance tests:

full AliRoot geometry imported from file realistic magnetic field realistic event generator (based in AliGenHIJINGpara) Basic TPC response (hit) generation and I/O Easy to extend to more detectors

Status

- MT tests and physics validation with Geant4 v10
- Physics Validation

Main problem so far TRD response

Too high mean energy loss leads to unrealistic cluster per tracklet distribution

testing now simple rescaling

• Multi Threading

Testing suite implemented and running performance tests ongoing

Geant4/AliRoot Validation

TRD Response

MC Tracks

Geant4 dE/dx scaled down

MC Tracks

Plans

- Standard QA validation
 - Now running further TRD test
 - with QA we found the most obvious problems
 - need to get all detector experts involved
- Full analysis with Geant4
 - mirror existing Geant3 production
 - use and validate in analysis
 - PWG help needed

Multi-Threading Performance

Simulation Time vs Number of Threads

- Overall execution time The batch time measured by Linux wall clock timer
- Simulation time The time reported by VMC simulation

AMD Opteron[™] 6274 (Interlagos) CPU

Speed-up vs Number of Threads

To investigate

- Panality due to
 - global-dynamic Thread Local Storage (TLS) model
 - the effect of shared vs static libraries
 - locking of primary event generation (gRandom)

Geometry

- Prioritized Overlaps
- Refinement of existing geometry
- Coordination of Run III geometry

Andrei Gheata

Prioritization of Overlaps with TGeo

The problem

Andrei Gheata

Overlaps and tracking

IDEAL

MISALIGNED

Solution: Parallel Geometry Naviagtion

- Declare some objects as VIO (very important)
- These objects are always considered when computing the location of a particle distance the the next boundary
- Navigation in the standard geometry has to be validated against the parallel geometry
 - Create parallel world (will be done from AliSimulation) TGeoParallelWorld *pw = gGeoManager->CreateParallelWorld("priority_sensors");
 - Add alignable (physical) nodes to the PW (detector code) TGeoPhysicalNode *node = gGeoManager->MakePhysicalNode("/TOP_1/chip_1"); pw->AddNode(node);
 - Declare the volumes which can possibly overlap the priority ones (detector code)

pw->AddOverlap("ladder")

This will HIGHLY increase performance

Ongoing geometry updates

EMCAL Cluster Map

Clusters

Geometry Refinements

Geometry for Detector Upgrades

- Improved coordination between TC, Upgrade, CWG8 and PWG-PP needed
 - implementation
 - versioning
 - documentation and common drawing data base
 - do not repeat the errors of the past