
ALICE Offline Week - Genève, 19.11.2014

Dario Berzano 

CERN ALICE

Git workflows  
for future software development



Preface



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

Splitting AliRoot Git repository

• AliRoot code split into two distinct Git repositories 

• needed for gradually splitting functionalities 

• Peter is going to talk extensively about that 

• Immediately after the split 

• both repos needed for building AliRoot 

• tags kept in sync between repos 

• Splitting repos is needed for eventually having distinct functionalities: 

• AliRoot core: slow (i.e. monthly) release cycle 

• AliPhysics - user analysis code only: daily release cycle

3



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

Our current Git workflow

• Currently we have no workflow at all 

• master often does not compile 

• branches are never updated → conflicts when merging 

• no consistent branch naming convention 

• stale branches never deleted 

• (the worst of it all) commits are cherry-picked for making releases

4



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

Git and ALICE are about collaborating

• Foreword: ALICE is a collaboration and Git is a collaborative tool 

• you write code for sharing it, not for yourself 

• when you share it you do not want to break things 

• accommodating everybody’s code changes is tricky 

• knowing how to use Git is as essential as knowing C++ 

• We (the Offline) provide interactive help, documentation, tutorials 

• it’s all here: https://dberzano.github.io/alice/git/ 

• any new instruction will be added there as well

5

https://dberzano.github.io/alice/git/


Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

A new Git workflow

• Purposes of our Git workflow: 

• keep the codebase clean (i.e., no back-and-forth merging) 

• have a master that always works 

• reduce merging conflicts 

• (and most importantly) give users an exact list of things to do 

• Based on Gitflow and Anar’s proposal (with only tiny modifications) 

• http://nvie.com/posts/a-successful-git-branching-model/ 

• https://github.com/AnarManafov/GitWorkflow/blob/master/
GitWorkflow.markdown

6

http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/AnarManafov/GitWorkflow/blob/master/GitWorkflow.markdown


Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

It’s all about branches

• master: full history of changes 

• master must always compile 

• nobody, except admins/experts, can push there 

• releases: one large squashed commit per release 

• feature-foobar: working branches 

• rebase from master, merge to master, never cherry-pick 

• deleted when finished (recreated if needed) 

• patches-version: hotfixes to releases 

• may cherry-pick some commits to master

7



Branches



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

master

• Accepts no direct commits from user: 

• merges (--no-ff to show streak) from feature branches (~pull reqs) 

• exceptionally accept cherry-picks from patch branches 

• master should always compile: feature branches tested automatically 

• History never rewritten (i.e. push -f disallowed)

9

feature-foobar

master

patches-v1.1.0

git checkout master 
git cherry-pick ab46fbaef5

git checkout master 
git merge feature-foobar



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

feature-foobar

• One feature branch per feature: this is where users push 

• Feature kept in sync with master by a feature admin 

• History kept clean: rebase from master (no merge) then push -f 

• Eventually merges from feature to master (--no-ff) 

• merge conflicts WILL NOT be solved in master 

• MUST be solved in feature by periodically rebasing on latest master 

• Branch is deleted once merged successfully to master

10

feature-foobar

master

feature-foobar

git checkout feature-foobar 
git rebase master



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

releases

• Special branch with a single commit per release 

• Latest commit taken is tagged in master branch with the version 

• A corresponding commit is created in releases 

• All commits from master since latest release are squashed 

• Version numbering convention: vMAJOR.MINOR.PATCHES 

• A commit in release has always PATCHES=0, i.e. v1.1.0

11

master} }
releases

v1.1.0 v1.2.0

squashing commits into 
a single release commit 

git rebase -i 537febc10a~1

release commits 
are also tags 

git tag v1.1.0 537febc10a



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

patches-v1.1.0

• Hotfixes to a release are commits in a patches branch (admins only) 

• Those commits might be new tags with patch number incremented 

• Important patches can be cherry-picked to master 

• This is the ONLY CASE where cherry-picking is legitimate

12

master} }
patches-v1.1.0

v1.1.0 v1.2.0

important patches are 
cherry-picked in history

releases

patch branches provide 
hotfixes for releasesv1.1.1

tags in patches increment  
the third number



Roles



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

What the end user can do

• Users can have push permissions on feature branches only 

• They cannot create a remote feature branch but they can request it 

• Force push forbidden to prevent destroying 

• Optional: in a GitHub/GitLab fashion, user may (only if she wants) 

• fork the main repository 

• have full permissions into her feature branch in the forked repo 

• issue pull requests from there to the master

14



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

What the feature branch admin can do

• Same permissions as the end user 

• Has the responsibility to keep her feature branch updated with master 

• does a pull --rebase 

• can rewrite branch history with push -f 

• Must solve merge conflicts before asking to merge to master 

• conflicts naturally solved by rebasing periodically 

• they still have to be solved manually: but not all at once! 

• Note: only one user per branch can do push -f to prevent data loss

15



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

What does the master admin can do

• Directly push commits to master 

• Create feature branches upon user’s request 

• Merge feature branches upon request (reject in case of conflicts) 

• Create releases 

• squash commits into releases branch 

• tag into master branch 

• Hotfixes 

• create patches branches 

• cherry-pick commits from patches to master

16



Conclusion



Dario.Berzano@cern.ch - ALICE Offline Week Nov 19-21, 2014 - Git workflows for future software development

Final words and plan

• Things will change gradually to avoid confusion 

• i.e., we will start with renaming branches 

• Every change will be announced in advance 

• as well as proper procedures to deal with it 

• Comments for improving the workflow are welcome, but remember 

• Git is no SVN and we are NOT going back to SVN 

• learning to work with Git is necessary 

• no workflow will make everybody happy (this one is a compromise) 

• a workflow is needed as what we have now is nothing

18


