
Repository split: reminder,
discussion and decision

19/11/2014

P. Hristov

1

History

• The idea came during the preparation for QM2014

• Jan Fiete showed the first presentation on 10/02/2014
during the weekly offline meeting

• We had more detailed presentation on 17/02/2014
during the Computing board, followed by long
discussion and decision to discuss with the physics
board the right moment for the repository split

• The Physics board recommended to do the split after
QM2014 (end of May)

• We are ten months after the initial discussion, and
some concerns came back

2

Proposal:

Factorizing PWGs out of AliRoot

Alina Grigoras

Jan Fiete Grosse-Oetringhaus

Peter Hristov

Computing Board, 17.02.14

Reminder

3

Motivation

Aim: Increase analysis turn around

(= time between code ready and data processed)

1. Increase frequency of code deployment to the Grid

2. Simplify committing of user code to the repository

Current share of analysis activity:

66% LEGO analysis trains vs 32% individual analysis

Final aim: Code ready when leaving the office (evening),

full data processed when back in the office (morning)

Initial

4

More on motivation

• Analysis and Core are different in
– Development patterns

– Development speed

– Code stability

– Code size

– Release procedure and validation

– Access rights

• We can profit from this exercise to start the
factorization of other AliRoot parts

5

More on motivation

• The splitting is a step towards the “FairRoot way”
of code distribution
– External software: Root, G3, G4, Boost, CGAL, FASTJET,

0MQ + Pythia6, Pythia8, Hijing, DPMJET, Herwig,
TEvtGen, etc generators currently in AliRoot
• The versions of each package are fixed in a configuration file

telling how to download the code: CVS, SVN, Git, tarballs
and so on

– Core software: base classes, steering, detectors, etc.
– Analysis software: 9 PWGs + few other modules

• The splitting triggered reimplementation of the
AliRoot build system using “native cmake”

6

More on motivation

• Smaller daily distributed analysis tarballs

• Possibility to

– extend the developers community;

– establish workflow;

– improve the code quality;

– delegate responsibility;

7

Proposal for First Step

• Factorize PWGs (9 folders) out of AliRoot
– Separate repository & tagging

• Aim
– Stable core libraries (ESD, AOD, ANALYSIS etc)

– Stable supplier objects (PID, physics selection etc)

– Tag only the parts which changes often (PWGs)

• Allows further improvements (see below)

• Implications
– One more dependency in the chain

– Users need to download and build one more package
(at run time it will look identical)

• First step in the modularization of AliRoot

8

More on splitting

• We can move to AliPhysics also:
– ANALYSIS or part of it (physics selection, centrality,

PID-dependent parts, calibration-dependent parts,
TENDERsupplies, ESDfilter, classes for cuts, macros,
etc.)

– OADB
– Detector calibration macros that use the analysis

framework
– CORRFW

• These modules probably have slower
development cycle, but logically belong to
AliPhysics

9

Tagging

• Separate tagging, for example
– AliRoot for example monthly, or on request

– PWG twice weekly (like AN tags now): we have it now daily

AliRoot

v1

PWG

v1.1

GEANT3

ROOT

PWG

v1.2

PWG

v1.3

PWG

v2.4 or v2.1

PWG

v2.5 or v2.2

AliRoot

v2

10

More on the tagging and dependency
management. Questions & objections

• How do I know that AliPhysics YYY requires
AliRoot XXX? This will create a lot of mess.
– The name of the AliPhysics tags can be self

descriptive: XXX.YYY and then clearly you see you
need AliRoot XXX for AliPhysics XXX.YYY

– The versions of AliRoot can be specified for each
(tagged) version i.e. in the file ARVersions.h and
then the CMake function FindAliRoot in AliPhysics
can always check if the build is possible (using >=
requirement)

11

Questions and objections (cont.)

• How do I make sure that the changes in
AliRoot are taken into account in AliPhysics? If
I work with an old AliRoot tag, I may need
many fixes to move to the next one.
– This is the same issue as with Root: when we

decide to move to a new version, we usually have
to fix some issues

– We also can use the validation cluster to build
AliPhysics master against AliRoot master and
automatically detect issues

12

Questions and objections (cont.)

• AliRoot depends on AliPhysics
– No, there is no such dependency. The fact that we call

macros that load the AliPhysics libraries for AOD/delta
AOD production is not dependency. In the same way Root
doesn’t depend on AliRoot even if we load all our home-
made code

• How do we tag AliPhysics? We need stable tags and it is
not possible to have them from the master
– This is not exactly true: we can use a tag from the master

and test if the AOD production works. If it doesn’t, we
follow the same procedure like now: we switch off the task
and ask the authors to fix it. Not all the task participate in
the AOD creation.

13

Questions and objections (cont.)

• Who will maintain the compatibility between
AliRoot and AliPhysics:

– For the moment PH-AIP-SDS will take care, but we
expect help from the PWGs

– We also will automatize as much as possible the
validation procedures

14

Future Steps

• Given a factorized PWG package, one can

imagine the following improvements:

• Increase frequency of PWG tags

– Nightly tags & builds

• PWG Repository to which analyzers can commit

directly

– With automatic checking

– No delay between code ready and in repository

15

Open Repository

• Current workflow

– Users send their code by email to expert (PWG

responsible or conveners)

– The expert imports the code, compiles, loads

libraries; if successful commits

– No functional checks are done; Why?

• Expert has to handle code of tens of users

• Crashing user code affects only him/herself (train test

catches this before submission user is excluded)

• Can we automatize this?

– Saves time of users and experts

16

Open Repository (2)
Incomplete list of ideas on the implementation

• Possibility for the user to provide a code update
– Build server imports the changes

– Compiles, loads libraries, (run some code?)

– If ok commit ; if error inform user

• Implementation possibilities are
– Email target or web page to which patch is sent

– Direct commit, build server reverts on failure

– Server-side user branches

• Access control
– PWG / directory / file level

– Expert may need to be involved if user wants to add/remove
something from a library

17

More on the open repository

• The build of the AliPhysics will be very fast
since the inter-analysis dependencies are
small. It is not like a change in AliESDTrack
triggers full recompilation of the
reconstruction and analysis
– Possibility to have hooks in CMake, but this needs

investigation

• Improved workflows can be adopted in
AliPhysics

18

Some Comments

• Advantages
– Stable CORE part

– Regular PWG tags lead to faster build & smaller archive

– Committers to PWG don't need to update/pull CORE part on
each commit/push

• Implications for users
– Need to download one package more

• Detector developers may not need PWG package
– Need to build one package more

• May build into same directory, no change in includes,
library path required

• AliRoot download script can do this transparently

• Implications for train operators
– Selection of PWG tag instead of AliRoot tag, dependencies

automatic

10/02/2014

19

Discussion

• Proposals discussed in last week’s Offline mtg and on mailing list

• Generally agreement on the concept

• Various ideas for the implementation (some included already today)

• Different opinions on what to put in this library and on the naming

• Proposals for more fine-grained splitting of AliRoot (foreseen for
AliRoot 6 / RUN 3)

– Ideally clear separation of responsibilities: external packages;
framework for simulation, reconstruction, analysis; PWG-specific
analysis code

– Account for the different development cycles

– Different distribution patterns (i.e. DAQ doesn’t need the simulation and
analysis parts of AliRoot)

 PWG part is only first step in the modularisation of AliRoot

• More complicated set of dependencies

– Possible problems in case of development based on old “AliRoot”
versions

17/02/2014

20

Current status

• Reimplementation of the CMake build system
(Alina)
– The libraries and binaries are almost complete
– The rootmap files are generated
– Fixes for circular dependencies are needed
– The creation of DA: ongoing
– Creation of PAR files: not yet started
– Code checker: obsolete, has to be replaced or revived
– Documentation: ongoing. We would like to move to

Doxygen, can be done after the split

• Repository split: tested (Alina, Dario)

21

Current status

• Adapt build server (Alina): will be done when
the repository is locked

• Adapt train system (JF): will be done when the
repository is locked

• Adapt MonALISA scripts (Alina, Costin): will be
done when the repository is locked

• Adapt AliRoot download scripts (Dario): done

• Adapt documentation (Dario): almost done

22

Proposed decision

• Follow the earlier decision and provide the
two repositories next week

• Implement gradually the new ideas

23

