
Development of the O2 prototype

Charis Kouzinopoulos
CERN

ALICE Offline week - Thursday, 20 November 2014

 Charis Kouzinopoulos - O2 prototype 2

Summary of Developments

● The AliceO2 repository was created on the 8th of
October

● The project is hosted on GitHub under
AliceO2Group

● The code can be checked out at:

 https://github.com/AliceO2Group/AliceO2.git

https://github.com/AliceO2Group/AliceO2.git

 Charis Kouzinopoulos - O2 prototype 3

● The project was constructed using the FairRoot project template as a starting
point

● Part of the FairRoot distribution:

https://github.com/FairRootGroup/FairRoot/tree/dev/templates/project_templ
ate

● The template comes with an example detector with sensitive and passive
volumes (NewDetector), event generators, etc

● To initialize the project and replace all the generic names to user defined
ones, use the rename.sh script:

rename.sh <project name> <class prefix> <detector name to be implemented>

● A detailed description of the project template is available here:

https://github.com/FairRootGroup/FairRoot/tree/dev#using-the-project-template

https://github.com/FairRootGroup/FairRoot/tree/dev/templates/project_template
https://github.com/FairRootGroup/FairRoot/tree/dev/templates/project_template
https://github.com/FairRootGroup/FairRoot/tree/dev#using-the-project-template

 Charis Kouzinopoulos - O2 prototype 4

To build the AliceO2 project, the following steps can be used:

● Install the FairSoft 'external' packages (latest tag jul14p3):

https://github.com/FairRootGroup/FairSoft/tree/jul14p3

These include Boost, Geant, Pythia, Root, ZMQ, Protocol Buffers etc

● Set the variable SIMPATH to point to the FairSoft installation directory

● Install the dev branch of FairRoot:

https://github.com/FairRootGroup/FairRoot/tree/dev

● Set the variable FAIRROOTPATH to the FairRoot installation directory

● Compile the dev branch of AliceO2:

https://github.com/AliceO2Group/AliceO2/tree/dev

https://github.com/FairRootGroup/FairSoft/tree/jul14p3
https://github.com/FairRootGroup/FairRoot/tree/dev
https://github.com/AliceO2Group/AliceO2/tree/dev

 Charis Kouzinopoulos - O2 prototype 5

The development workflow used is based on Anar
Manafov's proposal:

 https://github.com/AnarManafov/GitWorkflow/blob/master/GitWorkflow.markdown

See also yesterday's detailed presentation by Dario Berzano

Purpose of the Git workflow is to:

• Keep the codebase clean (i.e., no back-and-forth merging)

● Have a master that always works

● Maintain a clean history without merge commits and other garbage

● Have multiple levels of protection against conflicts

● Have multiple possibilities to recover from errors/mistakes before changes
come into the master

https://github.com/AnarManafov/GitWorkflow/blob/master/GitWorkflow.markdown

 Charis Kouzinopoulos - O2 prototype 6

There are only two long-term branches: master and dev

The master branch:

● Contains only stable code
● It is always ready to build – always kept in a releasable state
● No development is performed directly to master
● Only administrators have write permissions on it
● No history changes are allowed on master
● All new patches are introduced in master only via "git merge

--ff-only"

The dev branch:

● Is the current development branch
● Is inherited from the latest master
● It the place where developers code is merged into

 Charis Kouzinopoulos - O2 prototype 7

From the developers perspective:

● The developers fork the repository and create a local copy

● Locally, one branch is used per feature/bug
● Multiple commits per feature/bug are squashed into one
● Before each code push, the local branch is rebased against dev
● The branch is merged to dev using fast forward to combine the commit history

 Charis Kouzinopoulos - O2 prototype 8

To develop AliceO2, we are implementing the C++ Coding Guidelines and the C++
Naming & Formatting Rules as introduced by CWG2:

https://atelesca.web.cern.ch/atelesca/coding_guidelines/cppguide.xml

https://atelesca.web.cern.ch/atelesca/naming_formatting/cppguide.xml

Some examples:

● Names are descriptive and follow camel case convention: AliceO2, ContainerFactory,
getLayerParameters

● Curly braces placement

if (condition) {
} else {
}

● Use spaces instead of tabs, 2 space indentation, 120 characters per line etc

https://atelesca.web.cern.ch/atelesca/coding_guidelines/cppguide.xml
https://atelesca.web.cern.ch/atelesca/naming_formatting/cppguide.xml

 Charis Kouzinopoulos - O2 prototype 9

● To format the AliceO2 code according to the Formating Rules, we are using
ClangFormat

● The ClangFormat configuration file, .clang-format is included in the AliceO2 tree

● To apply the Formating Rules to a given source file, execute:

clang-format-3.5 -style=file -i SOURCEFILE

AllowShortLoopsOnAS
ingleLine:

false

AlignTrailingComments true

ColumnLimit 120

IndentWidth 2

SpacesInParentheses false

UseTab never

 Charis Kouzinopoulos - O2 prototype 10

Important notes:

● Use of namespaces everywhere in the form of Project::Component::

AliceO2::ITS::Detector::defineWrapperVolume
AliceO2::Base::Detector::defineWrapperVolume

The implementation of namespaces in the CINT intrepreter seems to be incomplete. It cannot
distinguish between the following:

AliceO2::ITS::Detector::defineWrapperVolume
 Detector::MaskToString

...as present in the dbase/dbValidation/Detector.h class of FairRoot

● Since with the new naming scheme, multiple headers with the same name can exist, it is essential to
ensure their correct inclusion by using a strict naming for header guards in the form of:
<PROJECT>_<PATH>_<FILE>_H_.

#define ALICEO2_ITS_DETECTOR_H_
#define ALICEO2_BASE_DETECTOR_H_

 Charis Kouzinopoulos - O2 prototype 11

Important notes:

● Use of namespaces everywhere in the form of Project::Component::

AliceO2::ITS::Detector::defineWrapperVolume
AliceO2::Base::Detector::defineWrapperVolume

The implementation of namespaces in the CINT intrepreter seems to be incomplete. It cannot
distinguish between the following:

AliceO2::ITS::Detector::defineWrapperVolume
 Detector::MaskToString

...as present in the dbase/dbValidation/Detector.h class of FairRoot

● Since with the new naming scheme, multiple headers with the same name can exist, it is essential to
ensure their correct inclusion by using a strict naming for header guards in the form of:
<PROJECT>_<PATH>_<FILE>_H_.

#define ALICEO2_ITS_DETECTOR_H_
#define ALICEO2_BASE_DETECTOR_H_

 Charis Kouzinopoulos - O2 prototype 12

For the code documentation, we are using doxygen

The C++ Comments Guidelines of CWG2 can be found at:
https://atelesca.web.cern.ch/atelesca/comments_guidelines/cppguide.xml

Some examples:

To comment code (double slashes):
// …. text ….

To document a class/method (triple slashes):
/// …. text ….

To document data members:
private:
 int mTotalNumberOfEntries; ///< Total number of entries

In classes using ROOT IO, for the data members excluded from IO:
double mBuffer; //!< Temporary buffer

https://atelesca.web.cern.ch/atelesca/comments_guidelines/cppguide.xml

 Charis Kouzinopoulos - O2 prototype 13

The doxygen configuration file, AliceO2Doxygen.conf, is included in the AliceO2 tree

To create the doxygen documentation, execute:

doxygen AliceO2Doxygen.conf

Next step: automatically update and upload the documentation

 Charis Kouzinopoulos - O2 prototype 14

AliceO2 – Tree summary

The AliceO2 tree currently holds the following main modules:

● Devices: Data Transportation, FLP to EPN code, HLTWrapper code

● ITS: Simulation code for the ITS detector

● Base: Abstraction classes for the ITS detector

● Data: Particle stack for the transport simulation, storage of Monte Carlo tracks
processed by the particle stack

● Field: Magnetic field classes

● Resources: Magnetic field maps

 Charis Kouzinopoulos - O2 prototype 15

AliceO2 contains a port of the simulation code for the ITS detector

● The previous port was based on ITS Upgrade v1 code of AliRoot tag v5-05-64-AN

● The current port was updated to ITS Upgrade v1 code of AliRoot tag vAN-20140922

● There are no dependencies on AliRoot

An example macro is included with AliceO2:

root macro/run_sim.C

 Charis Kouzinopoulos - O2 prototype 16

The port includes the ITS Upgrade geometry

● UpgradeV1Layer (AliITSUv1Layer): defines the Geometry for the ITS Upgrade using Tgeo

● V11Geometry (AliITSv11Geometry): is a base class for the ITS geometry version 11

● UpgradeGeometryTGeo (AliITSUGeomTGeo): an interface class to TgeoManager.
It is used in order to query the TGeo ITS geometry

 Charis Kouzinopoulos - O2 prototype 17

To perform simulation and create points, the virtual ProcessHits method of FairRoot is used
in the Detector (O2its) class.

● The method is called from the MC stepping
● Information (Energy Loss, Track time, Track number Id and Volume Id) is recorded

 on the points
● The position and momentum of the particles is tracked from MC
● On every step of the active volume, a point is created with information on Track number Id,

Volume Id, the particle entrance position, the current position, the momentum, the entrance
time, the current time, the length and the energy loss

● The points are added to an AliceO2::Data::Stack stack

data::Stack

 Charis Kouzinopoulos - O2 prototype 18

Testing infrastructure:

● Testing capability was recently added for the ITS simulation (Mohammad)

● A small script has to be added to CmakeLists.txt:

GENERATE_ROOT_TEST_SCRIPT(${CMAKE_SOURCE_DIR}/macro/run_sim.C)

ForEach(_mcEngine IN ITEMS TGeant3 TGeant4)
 Add_Test(run_sim_${_mcEngine}
 ${CMAKE_BINARY_DIR}/macro/run_sim.sh 10 \"${_mcEngine}\")
 Set_Tests_Properties(run_sim_${_mcEngine} PROPERTIES TIMEOUT "30")
 Set_Tests_Properties(run_sim_${_mcEngine} PROPERTIES PASS_REGULAR_EXPRESSION "Macro finished
succesfully")
EndForEach(_mcEngine IN ITEMS TGeant3 TGeant4)

● It is invoked by running make test

 Charis Kouzinopoulos - O2 prototype 19

Testing infrastructure:

● It is executing the macro/run_sim.C macro using Geant3 and Geant4:

Start 1: run_sim_TGeant3
1/2 Test #1: run_sim_TGeant3 Passed 12.13 sec
Start 2: run_sim_TGeant4
2/2 Test #2: run_sim_TGeant4 Passed 7.15 sec

Part of an automate procedure to publish test results to CDash

 Charis Kouzinopoulos - O2 prototype 20

Testing infrastructure:

● It is executing the macro/run_sim.C macro using Geant3 and Geant4:

Start 1: run_sim_TGeant3
1/2 Test #1: run_sim_TGeant3 Passed 12.13 sec
Start 2: run_sim_TGeant4
2/2 Test #2: run_sim_TGeant4 Passed 7.15 sec

Part of an automate procedure to publish test results to CDash

 Charis Kouzinopoulos - O2 prototype 21

Testing infrastructure:

To submit a specific configuration to CDash:

#!/bin/bash
export LINUX_FLAVOUR=MacOS
export FAIRSOFT_VERSION="FairSoft_dev"
export SIMPATH=/Users/turany/fairsoft/git/install/fairsoft_dev/
export BUILDDIR=/Users/turany/fairsoft/git/AliceO2/build
export SOURCEDIR=/Users/turany/fairsoft/git/AliceO2
export FAIRROOTPATH=/Users/turany/fairsoft/git/install/v-14.11/
export NCPU=8

To submit the configuration to CDash:

./Dart.sh Experimental CONFIGNAME

 Charis Kouzinopoulos - O2 prototype 22

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

