
„staggered“ data transfer shaping
development and first results

Alexey Rybalchenko

ALICE Offline week : 2014-11-20

For the Run 3, the ALICE detector will produce over 1 TB/s output.

This data have to be distributed from about 250 Front Level Processors to O(1000) Event Processing Nodes.

FairMQ is proposed as a transport solution between FLPs and EPNs.
FairMQ enables asynchronous communication via messages between processes/nodes.
The underlying transport of FairMQ is implemented via ZeroMQ or nanomsg libraries,

with the transport interface allowing implementation with other techniques.

FLP to EPN Scenario

1/6

n: 250
m: O(1000)

Payload for tests: FairMQ multipart message: Timeframe ID Data of configurable size

FLP decides where to send the payload from the
timeframe ID: TimeframeID % numOfOutputs
(EPN availability is tracked with the heartbeat
received within timeout window).

Current status: prototype of distribution and collecting
of timeframes on the EPNs is working!

This can be replaced with EPN scheduling (Sylvain Chapeland),
where the scheduling service will provide
an EPN ID to which to send a given Timeframe ID.

Current step: integrate the service with the FLP2EPN prototype.
Test/compare performance.

Data Distribution

2/6

FrameBuilder: separate device to collect timeframes together.

Available EPNs request work from FrameBuilders via request-reply pattern.

Alternative: Frame Builders

Current status: in development.

3/6

FLP2EPN Network Load

All FLPs sending at the same time to a single EPN could overload the network path.

FLPs should operate at maximum performance, so synchronization between them should be avoided/minimized.

First version of a data transfer shaping algorithm is implemented to minimize the contention.

4/6

Approach: Delay first sending of some FLPs by an offset,
storing pending messages in a buffer.

Buffer: std::queue (FIFO) of FairMQMessage pointers.
(no copying/moving of the message content,
automatic deallocation after FairMQ has sent out the data)

Maximum buffer size: <# of FLPs> FairMQMessages.

Offset/Buffer: configurable!
The optimal value for the offset depends on the use case.

Status: configurable offset/buffer is working,
(current progress available on GitHub:
https://github.com/rbx/AliceO2/tree/FLP2EPN-distributed)

now testing & measuring performance.
HLT dev cluster: 10 nodes connected via 40Gbit Infiniband.
Current test setups: 16 FLPs -> 16 EPNs, 64 FLPs -> 64 EPNs.

Staggered Transfer

When the buffers are full, all FLPs can send at the same time;
payloads go to different EPNs/Frame Builders.

5/6

Very early measurements

6/6

~567 MB/s x 4 processes per node ≈
~2271 MB/s throughput / (on 1 EPN)

~150 MB/s x 16 processes per node ≈
~2413 MB/s throughput (on 1 EPN)

16 FLPs (4 nodes) -> 16 EPNs (4 nodes) 64 FLPs (4 nodes) -> 64 EPNs (4 nodes)

Payload for tests: FairMQ multipart message: Timeframe ID 10 MB

msg/s reports double numbers of msgs because it is currently counting msg parts (multipart)

