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(dimension-six operators)

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states
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parametrized by Wilson coefficients:  cWW , cBB , cW , … 

not a clear connection with physics!

Then, better talk about couplings (interactions)!

➥ BSM primaries

Good for model-building (e.g. SILH), but… 

(a proposal to parametrize BSM effects)
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couplings ≈ observables e.g. gZ
↵ $ �(Z ! ↵)

 ➡ Leading BSM effects
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➥ Plenty of correlations among possible interactions    
➥ Not all type of interactions can arise from       !

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

(see also arXiv:1406.6376)
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1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:
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where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

+ dipole-type interactions for W & f
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Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can
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where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states
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(non-Higgs) EWSB primaries:



Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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A better perspective to understand how close to a SM Higgs: 

SM Higgs !
prediction

generic scalar!
prediction

● ●

●●

●

!   H
ig
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 c
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Fig. 1: Fit of the Higgs couplings, gh
ff and

q
gh

V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
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We will only keep interactions up to order O(h3
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) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient
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We will only keep interactions up to order O(h3
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) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
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for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write
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We will only keep interactions up to order O(h3
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) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
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use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
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for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write
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for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
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We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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We have chosen as Higgs primary couplings those in Eq. (2), as all of them can be independently
generated from the operators of Eq. (16). We must be aware however that the correspondence is not one-
to-one [8, 16]. There is a certain freedom to choose the set of Higgs primary couplings. For example,
instead of �� and Z� , we could have taken ZZ,WW , as these latter can also receive independent con-
tributions from Eq. (16). The reason to choose Eq. (2) as Higgs primary couplings it is just experimental:
they are the set of primary Higgs couplings best measured at the LHC.

Similarly, the CP-violating dimension-6 operators constructed with |H|2 are

i|H|2 ¯QL
eHuR � h.c. , i|H|2 ¯QLHdR � h.c. , i|H|2 ¯LLHeR � h.c. ,

|H|2GAµ⌫ eGA
µ⌫ , |H|2Bµ⌫ eBµ⌫ , |H|2W aµ⌫fW a

µ⌫ . (17)

that generate the set of primary Higgs couplings of Eq. (4). Again, all these operators for |H|2 ! v2/2
generate SM terms (that redefine SM parameters) and therefore their effects can only be seen in Higgs
couplings.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDM, place indirect
bounds on these Higgs couplings. Nevertheless, we must be aware that these bounds will always be
model-dependent, as there can be, in principle, other BSM effects entering in the EDM.

4.2 Beyond the primaries
The rest of Higgs couplings, beyond the primaries, are those of Eq. (3) for CP-conservation and at the
order we mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it
can be proven [8,16] that contributions from L6 to Eq. (3) are not independent from contributions to pri-
mary Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained
by other experimental measurements. As an example, consider the operator H†DµHēR�µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 16, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level):

�ghZZ = 2gmW s2✓W
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c2✓W

!
,

ghZff = 2�gZff � 2�gZ1 (g
Z
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with
�gWff 0 =

c✓Wp
2

�
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2
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�
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VCKM, 0 for f = fL, fR , (21)

5At O(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [19].
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operators of Eq. (16). We must be aware however that the correspondence is not one-to-one [9, 19].
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and Z� , we could have taken ZZ,WW , as these latter can also receive independent contributions from
Eq. (16). The reason to choose Eq. (2) as primary Higgs couplings it is just experimental: they are the
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that can independently generate the set of primary Higgs couplings of Eq. (4). Again, all these operators
for |H|2 ! v2/2 generate SM terms (that redefine SM parameters) and therefore their physical effects
can only be seen in Higgs physics.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDMs, place indirect
bounds on these Higgs couplings. We must be aware however that these bounds are model-dependent,
as there can be, in principle, other BSM effects entering in the EDMs.

4.2 Beyond the primaries
The rest of CP-conserving Higgs couplings, beyond the primaries, are those of Eq. (3) at the order we
mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it can be
proven [9, 19] that contributions from L6 to Eq. (3) are not independent from contributions to primary
Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained by
other experimental measurements. As an example, consider the operator H†DµHēR�µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 14, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level) [6]:
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are the �, Z and W couplings to fermions in the SM. Flavor indices are again implicit. We have also
defined by �gZff (�gWff 0) the BSM corrections to the Z (W ) couplings to fermions:
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2
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5At O(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [13].
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-process pp ! qqV ! qqh.

processes. The most relevant ones are the Higgs decays h ! V ff , the V h-associated production and
the VBF-process pp ! qqV ! qqh. All of them arise from the hV ff amplitude (see Fig. 4) given by
(neglecting fermion masses)

MhVff (q, p) =
1

v
✏⇤µ(q) J⌫

V (p)
⇥
AV ⌘µ⌫ + BV

(p · q ⌘µ⌫ � pµ q⌫) + CV ✏µ⌫⇢�p⇢q�
⇤

, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined

AV
= aV + baV

m2
V

p2 � m2
V
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= bV

1

p2 � m2
V

+
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p2
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1
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+ bcV 1
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, (40)

with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,

baZ = 2gZff

✓
1 +

�ghV V + �ghZZ
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◆
, baW = 2gWff 0
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�ghV V
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,
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bbZ = �2eQf t✓W Z� ,

cZ = �4gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQf t✓W eZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [30].
The most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3) is, as we
will discuss below, by measuring them at the LHC high-energy regime, for example in the V h-associated
Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2, 3], and at present there is no sign of being different from zero; from the experimental data
we have �0.35 < �WZ � 1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15) to be [16]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 1.6Z� . (42)

where we have used Eqs. (18)-(19), neglecting �� and �gZ,Wff since their constraints are 10

�2 � 10

�3.
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distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)
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C for
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From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-like process pp ! qqV/qqV V ⇤ ! qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1
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AV ⌘µ⌫ + BV
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, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined
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with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,

baZ = 2gZff
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, baW = 2gWff 0
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,

bZ = �2gZffZZ , bW = �2gWff 0WW ,

bbZ = �2eQfZ� ,

cZ = �2gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]
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WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-process pp ! qqV ! qqh.

processes. The most relevant ones are the Higgs decays h ! V ff , the V h-associated production and
the VBF-process pp ! qqV ! qqh. All of them arise from the hV ff amplitude (see Fig. 4) given by
(neglecting fermion masses)

MhVff (q, p) =
1

v
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⇥
AV ⌘µ⌫ + BV

(p · q ⌘µ⌫ � pµ q⌫) + CV ✏µ⌫⇢�p⇢q�
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, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined
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with bbW ,bcW = 0, and where
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From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [30].
The most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3) is, as we
will discuss below, by measuring them at the LHC high-energy regime, for example in the V h-associated
Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2, 3], and at present there is no sign of being different from zero; from the experimental data
we have �0.35 < �WZ � 1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15) to be [16]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 1.6Z� . (42)

where we have used Eqs. (18)-(19), neglecting �� and �gZ,Wff since their constraints are 10

�2 � 10

�3.
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-like process pp ! qqV/qqV V ⇤ ! qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1
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⇥
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where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined
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with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,
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bZ = �2gZffZZ , bW = �2gWff 0WW ,

bbZ = �2eQfZ� ,

cZ = �2gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-like process pp ! qqV/qqV V ⇤ ! qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1

v
✏⇤µ(q) J⌫

V (p)
⇥
AV ⌘µ⌫ + BV

(p · q ⌘µ⌫ � pµ q⌫) + CV ✏µ⌫⇢�p⇢q�
⇤

, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined

AV
= aV + baV
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with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,

baZ = 2gZff
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1 +

�ghV V + �ghZZ

gmW
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, baW = 2gWff 0
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1 +

�ghV V
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,

bZ = �2gZffZZ , bW = �2gWff 0WW ,

bbZ = �2eQfZ� ,

cZ = �2gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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Priorities (non-democratic approach: Not all couplings are equal (ly) interesting):

       1) Symmetries 	

       2) Dynamics (of the new-physics sector)

Reduction of couplings must be either by 

We must decide first which 	

                 are the best set of couplings to measure

A proposal for non-primaries: 

☛ Keep lowest-order in a q2-expansion

☛ Impose universality and custodial





Correlations between couplings



Explicit correlations between hZff and Zff:

ĥ ⌘ v + h

3

first term of Eq. (10) gives a contribution to the
custodial-preserving coupling hV V (V = Z,W ) and
determines another BSM primary e↵ect. This cou-
pling can be measured, for example, in WW ! h.

It is important at this point to stress that, by
construction, the di↵erent �Li are orthogonally pro-
jected into di↵erent BSM primary e↵ects, and none
of the terms in a given �Li contributes to other BSM
primaries that is not its own (e.g., no term in �Lh

��

contributes to the hZ�, hGG, hff , h3 or hV V cou-
pling). The additional terms in each �Li, beyond
the BSM primary e↵ect, tell us what physical pro-
cesses are not independent and are instead correlated
with the BSM primaries. This can be useful if a de-
parture from the SM predictions is observed: for ex-
ample, if only a deviation in h ! �� is measured,
Eq. (5) tells us that there must also be departures in
h ! ZZ/WW . Alternatively, if no deviations from
the SM are found in the BSM primary e↵ects, these
relations can be used to put constraints on the size
of the other terms in �Li.

Having presented all possible interactions achieved
by an ĥ-dependent shift in the SM parameters, we
study next the set of possible (CP-conserving) BSM
contributions that can lead to departures from gauge-
coupling universality. How many e↵ects of this type
can we have? Since EM and SU(3)c must be unbro-
ken, only the W and Z couplings can receive devi-
ations from the SM. Assuming for simplicity family
universality we have, in principle, 9 gauge-boson cou-
plings to fermions (the Z couplings to eL,R, ⌫L, uL,R,
dL,R and the W couplings to eL⌫L and uLdL), the Z
coupling to ĥ, 3 and triple-gauge (TGC) and quartic-
gauge (QGC) self-couplings. We must however keep
in mind that not all deviations in these couplings are
independent from each other, since a linear combi-
nation of all these corresponds to the universal shift
of Eq. (6).

Let us first look at the 10 gauge-boson couplings
to fermions and to the Higgs-field ĥ. In the gauge
eigenstate basis, corrections to these couplings arise

3 We do not independently count the W coupling to ĥ, since
this is equivalent to considering the custodial-preserving
combination ĥ2(WµWµ + ZµZµ/2c2✓W ) that has already

been accounted for in Eq. (10).

from the ĥ-dependent interactions

ĥ2V a
µ J

µa
f , ĥ2⌘aV a

µ J
µ
L f , ĥ2⌘aV a

µ J
µ
R f , (12)

ĥ4⌘a⌘bV a
µ V

µ b , ĥ4⌘a⌘bV a
µ J

µ b
L f , (13)

where V a
µ ⌘ W a

µ � t✓W �a3Bµ (to preserve EM) and,
to make the global SU(2)L properties manifest, we
have separated the interactions in which the Higgs
enters as a singlet, ĥ2, or as a triplet,

ĥ2⌘a 2 H†�aH , with ⌘a ⌘ (0, 0, 1) . (14)

The lepton currents are Jµa
f = L̄L�a�µLL, J

µ
L f =

L̄L�µLL and Jµ
R f = ēR�µeR, and similarly for

quarks. All terms of Eq. (12) can arise from L
6

built
as products of fermion currents and Higgs currents,
these latter being, in the unitary gauge,

iH†$DµH = �g
ĥ2

2
⌘aV a

µ , iH†�a
$
DµH = g

ĥ2

2
V a
µ .

(15)
Similarly, the first term of Eq. (13) can arise from
a dimension-6 operator built by squaring the first
Higgs current of Eq. (15). On the other hand, the
second term in Eq. (13), containing four Higgs, can
only arise from a dimension-8 operator and can then
be neglected. This has the implication that, at the
leading order (L

6

), BSM-e↵ects in the W couplings
are not independent from those in the Z couplings.

There are many ways to connect the BSM-e↵ects
of Eq. (12) to experiments. Since the best con-
straints on V ff vertices come from measurement of
the couplings at the Z-pole by LEP, it is convenient
to parametrize the e↵ects of Eq. (12) as modifications
of the Z couplings to fermions:

�LV
ee = �gZ

eR

ĥ2

v2
ZµēR�µeR (16)

+ �gZ
eL

ĥ2

v2


ZµēL�µeL � c✓Wp

2
(W+µ⌫̄L�µeL + h.c.)

�
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⌫L

ĥ2

v2


Zµ⌫̄L�µ⌫L +

c✓Wp
2
(W+µ⌫̄L�µeL + h.c.)

�
,

for leptons, and similarly for quarks:

�LV
qq = �gZ

uR

ĥ2

v2
ZµūR�µuR + �gZ

dR

ĥ2

v2
Zµd̄R�µdR

+ �gZ
dL
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2
(W+µūL�µdL + h.c.)

�
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ĥ2
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�
.

(17)
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custodial-preserving coupling hV V (V = Z,W ) and
determines another BSM primary e↵ect. This cou-
pling can be measured, for example, in WW ! h.

It is important at this point to stress that, by
construction, the di↵erent �Li are orthogonally pro-
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��

contributes to the hZ�, hGG, hff , h3 or hV V cou-
pling). The additional terms in each �Li, beyond
the BSM primary e↵ect, tell us what physical pro-
cesses are not independent and are instead correlated
with the BSM primaries. This can be useful if a de-
parture from the SM predictions is observed: for ex-
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Eq. (5) tells us that there must also be departures in
h ! ZZ/WW . Alternatively, if no deviations from
the SM are found in the BSM primary e↵ects, these
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of the other terms in �Li.

Having presented all possible interactions achieved
by an ĥ-dependent shift in the SM parameters, we
study next the set of possible (CP-conserving) BSM
contributions that can lead to departures from gauge-
coupling universality. How many e↵ects of this type
can we have? Since EM and SU(3)c must be unbro-
ken, only the W and Z couplings can receive devi-
ations from the SM. Assuming for simplicity family
universality we have, in principle, 9 gauge-boson cou-
plings to fermions (the Z couplings to eL,R, ⌫L, uL,R,
dL,R and the W couplings to eL⌫L and uLdL), the Z
coupling to ĥ, 3 and triple-gauge (TGC) and quartic-
gauge (QGC) self-couplings. We must however keep
in mind that not all deviations in these couplings are
independent from each other, since a linear combi-
nation of all these corresponds to the universal shift
of Eq. (6).

Let us first look at the 10 gauge-boson couplings
to fermions and to the Higgs-field ĥ. In the gauge
eigenstate basis, corrections to these couplings arise

3 We do not independently count the W coupling to ĥ, since
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f , ĥ2⌘aV a

µ J
µ
L f , ĥ2⌘aV a
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to make the global SU(2)L properties manifest, we
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enters as a singlet, ĥ2, or as a triplet,
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L̄L�µLL and Jµ
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Similarly, the first term of Eq. (13) can arise from
a dimension-6 operator built by squaring the first
Higgs current of Eq. (15). On the other hand, the
second term in Eq. (13), containing four Higgs, can
only arise from a dimension-8 operator and can then
be neglected. This has the implication that, at the
leading order (L

6

), BSM-e↵ects in the W couplings
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ĥ2

v2
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ĥ2

v2


Zµ⌫̄L�µ⌫L +

c✓Wp
2
(W+µ⌫̄L�µeL + h.c.)

�
,

for leptons, and similarly for quarks:

�LV
qq = �gZ

uR

ĥ2
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2 CP-conserving BSM primary e↵ects

2.1 ĥ-dependent BSM e↵ects

We start considering BSM-e↵ects that can be parametrized as ĥ-dependent interactions, where
ĥ is the neutral component of the Higgs-field:

ĥ ⌘ v + h(x) , (2)

where v ' 246 GeV is the Higgs vacuum expectation value (VEV) and h the Higgs excitation.
We first consider those CP-conserving e↵ects which a↵ect interactions involving only h, that
arise from dimension-6 operators generated by multiplying operators in L

4

by |H|2/⇤2 (H being
the Higgs doublet). In the unitary gauge, that will be used henceforth, these e↵ects can be
captured by promoting the SM parameters, that we take to be e, s✓W , gs, Yf ,�h, and the Higgs

kinetic-term Zh, b to ĥ-dependent functions:
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and in what follows) we absorb powers of v2/⇤2 in the expansion coe�cients. In the vacuum
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Eq. (4) gives the SM EW-interactions after substituting Aµ ! Aµ � s2✓W (v)Zµ and canonically
normalizing the gauge-boson fields. The two independent deviations w.r.t. the SM, parametrized
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e(ĥ) = e(1 + ��
ĥ2
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bThe e↵ect of |H|2/⇤2 multiplying the SM fermion kinetic-terms is redundant as can be eliminated by a
redefinition of the SM fermions.

to our first BSM primary e↵ect: it defines the best observable that can be used to bound all
terms in �Lh

�� . Indeed, from the experimental value of h ! �� 7 we obtain bounds on �� at
the per-mille level 5.

On the other hand, we can take, orthogonally to Eq. (5), the direction
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that in Eq. (4) gives the BSM-induced interactions
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The first term of Eq. (8) defines another BSM primary e↵ect: its contribution to the hZ�
coupling, that is constrained by h ! Z� searches. Similarly, taking the SU(3)c coupling gs(ĥ) =
gs(1 + GGĥ2/v2), one obtains
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whose first term modifies the hGG coupling measured in GG ! h7, that leads also to a per-mille
bound on GG
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@hYf (ĥ) and �g3h = �v2@h�h(ĥ), whose BSM primary e↵ects are respectively

the contributions to the hff and h3 interactions. Finally, from Zh(ĥ) we obtain, by going to
the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect
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The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures
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the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect

�Lh
V V = �gh

V V

"
h

 
W+µW�

µ +
ZµZµ

2c2✓W

!
+�

#
, (11)

where

� =

 
W+µW�

µ +
ZµZµ

2c2✓W

!⇣2h2

v
+

4h3

3v2
+

h4

3v3

⌘
+

m2

h

12m2

W

✓
h4

v
+

3h5

4v2
+

h6

8v3

◆

+
mf

4m2

W

✓
h2

v
+

h3

3v2

◆�
f̄LfR + h.c.

�
, (12)

The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures

to our first BSM primary e↵ect: it defines the best observable that can be used to bound all
terms in �Lh

�� . Indeed, from the experimental value of h ! �� 7 we obtain bounds on �� at
the per-mille level 5.

On the other hand, we can take, orthogonally to Eq. (5), the direction
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@hYf (ĥ) and �g3h = �v2@h�h(ĥ), whose BSM primary e↵ects are respectively

the contributions to the hff and h3 interactions. Finally, from Zh(ĥ) we obtain, by going to
the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect

�Lh
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, (11)

where
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+
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+
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✓
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v
+
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3v2

◆�
f̄LfR + h.c.

�
, (12)

The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures

Correlations with the primary Higgs couplings:
hVV form-factor	

correlated with hγγ

hVV form-factor	

correlated with hγZ
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using ↵em, mW and mZ as the SM input parameters. This latter choice makes the phenomeno-
logical analysis particularly transparent, since these input parameters receive no corrections
from BSM-e↵ects. e On the other hand, �gZ

1 is constrained by TGC measurements at LEP2 10

and LHC. Although a global analysis on the L
6

contributions to TGC, using all existing data,
does not exist yet, we expect that bounds on �gZ

1 can reach at present the per-cent level 11,12.
Eq. (22) gives also contributions to Higgs physics, such as a custodial-breaking hV V coupling or
new e↵ects to h ! V f̄f that could be also used to constrain �gZ

1 . We believe however that when
rigorous analyses of both TGC and Higgs physics (on the lines of Ref. 13) will be available, TGC
constraints will always outdo Higgs physics ones 12, so that our parametrization will remain the
most convenient.

Apart from Eq. (13), there can also be BSM-induced interactions between fermion and gauge-
bosons of a di↵erent type than those in the SM. These include couplings of W to right-handed
quarks and dipole-type interactions, that we parametrize as

�LW
R = �gW

R

ĥ2

v2
W+

µ ūR�
µdR + h.c. , (23)

�LV
dipole

=
Yqĥ

m2

W

h
�G

q q̄LT
A�µ⌫qRG

A
µ⌫ + �A

q (T
3

q̄L�
µ⌫qRAµ⌫ +

s✓Wp
2
ūL�

µ⌫dRW
+

µ⌫)

+ �Z
q (T3

q̄L�
µ⌫qRZµ⌫ +

c✓Wp
2
ūL�

µ⌫dRW
+

µ⌫) + h.c.
i
,

for quarks q = u, d, where the coe�cients are assumed to be real and T
3

denotes weak isospin
(and similarly for leptons). Note that the dipole interactions with W are not independent from
those of A and Z, as the term that splits these dipole interactions, ĥ2⌘aW a

µ⌫ ĥq̄L�
µ⌫qR, arises at

dimension-8.
Let us now move to TGC and QGC. At O(p4) there are 4 possible CP-conserving TGC

couplings and 5 QGC14, but not all can arise from L
6

. We already encountered one with the same
Lorentz structure as in the SM:�LgZ1

that led to Eq. (21). Other contributions could in principle

arise from L
6

operators containing covariant derivatives and/or field-strengths. However, by
integration by parts and using the EOM, one can reduce them to dimension-6 operators with
only field-strengths 2. The only operators at O(p4), made of field-strengths and contributing to
EWSB, are

ĥ2⌘aW a
µ⌫B

µ⌫ , ĥ4⌘a⌘bW a
µ⌫W

b µ⌫ . (24)

The second one involves four Higgs and cannot arise from dimension-6 operators, while the first
one gives

ĥ2⌘aW a
µ⌫B

µ⌫ = ĥ2
h
Ŵ 3

µ⌫B
µ⌫ + 2igc✓WW�

µ W+

⌫ (Aµ⌫ � t✓WZµ⌫)
i
. (25)

The second term clearly contains a new dipole-type TGC for the W , that can be identified with
�� of Ref. 8. Since Eq. (25) also contains contributions to other BSM primaries (such as the
S-parameter and h ! ��, Z�), we must arrange a linear combination that does not project into
them. We find that

�L� =
��

v2

h
ieĥ2(Aµ⌫ � t✓WZµ⌫)W

+µW�⌫ + Z⌫@µĥ
2(t✓WAµ⌫ � t2✓WZµ⌫)

+
(ĥ2 � v2)

2
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µ⌫ +
c
2✓W

2c2✓W
Zµ⌫Z

µ⌫ +W+

µ⌫W
�µ⌫

⌘i
, (26)

gives us the combination that we were looking for: it projects into a new BSM primary e↵ect,
the TGC �� 8, but not into previous ones.

eFour-fermion interactions in L6 (which have no direct relation with Higgs physics and can therefore be studied
separately) a↵ect the value of GF as extracted through the measurement of µ-decay. For this reason the traditional
choice of using GF to fix one input parameter is less convenient than the one we propose here.

Correlations with triple gauge couplings (TGC):

hVV form-factor	

correlated with ZWW

ĥ ⌘ v + h

for leptons, and similarly for quarks:

�LV
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ĥ2
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ĥ2

v2


Zµd̄L�µdL � c✓Wp

2
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�
. (18)

Notice that, as discussed above, modifications to the W couplings are explicitly related to
modifications to the Z couplings.

It remains to consider the independent e↵ect of the first term of Eq. (14). We consider it in
the following linear combination (that includes also terms of Eq. (13)):

��gZ
1 c2✓W
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2
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c
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#
,

(19)
where Jµ

Z = Jµ
3

�s2✓W Jµ
em. Why this particular combination? This is obtained by performing the

EM-preserving shift

s2✓W ! s2✓W (1 + 2�gZ
1 c2✓W ĥ2/v2) (keeping e constant) , (20)

only in the SM gauge-couplings of the fermions and ĥ. In the vacuum ĥ = v (freezing the Higgs
h), the e↵ects in Eq. (19) can only be probed as a relative di↵erence of s✓W as measured in

the fermion and ĥ sector (V ff couplings and gauge-boson masses), with respect to the value
as measured in interactions involving gauge bosons only. Therefore it requires the knowledge
of TGC/QGC. Indeed, by field redefinitions, the non-Higgs physics part of Eq. (19) can be
rewritten as a contribution to the VWW coupling (gV ) and V V 0WW coupling (gV V 0

) only.
This explicitly gives
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gZSM
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2c2✓W gWW
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=
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2gZZ
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=
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. (21)

where �gZ
1 has been chosen to match the TGC definition of Ref. 8. Eq. (19) gives however also

a contribution to the custodial-preserving hV V coupling that defines one of our BSM primary,
�gh

V V . To eliminate this, we redefine �gh
V V ! �gh

V V + g2v�gZ
1 c2✓W in Eq. (11), that gives an

extra contribution proportional �gZ
1 to be added to Eq. (19). The final result is
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. (22)

The interesting property of our parametrization in Eqs. (17,18,22) is the following. Since
BSM-e↵ects to SM propagators can always be eliminated through the equations of motion
(EOM), there is a one to one correspondence between each of the �gZ

f of Eqs. (17,18) and

the corresponding �(Z ! ff) partial-width measured at LEP1 9. d Therefore all the 7 param-
eters �gZ

f can be bounded at the per-mille level by Z decay-widths and asymmetries at LEP1,

dThis is true in the limit in which mf is neglected, so that interference with dipole-type BSM e↵ects vanishes.
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using ↵em, mW and mZ as the SM input parameters. This latter choice makes the phenomeno-
logical analysis particularly transparent, since these input parameters receive no corrections
from BSM-e↵ects. e On the other hand, �gZ

1 is constrained by TGC measurements at LEP2 10

and LHC. Although a global analysis on the L
6

contributions to TGC, using all existing data,
does not exist yet, we expect that bounds on �gZ

1 can reach at present the per-cent level 11,12.
Eq. (22) gives also contributions to Higgs physics, such as a custodial-breaking hV V coupling or
new e↵ects to h ! V f̄f that could be also used to constrain �gZ

1 . We believe however that when
rigorous analyses of both TGC and Higgs physics (on the lines of Ref. 13) will be available, TGC
constraints will always outdo Higgs physics ones 12, so that our parametrization will remain the
most convenient.

Apart from Eq. (13), there can also be BSM-induced interactions between fermion and gauge-
bosons of a di↵erent type than those in the SM. These include couplings of W to right-handed
quarks and dipole-type interactions, that we parametrize as
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,

for quarks q = u, d, where the coe�cients are assumed to be real and T
3

denotes weak isospin
(and similarly for leptons). Note that the dipole interactions with W are not independent from
those of A and Z, as the term that splits these dipole interactions, ĥ2⌘aW a

µ⌫ ĥq̄L�
µ⌫qR, arises at

dimension-8.
Let us now move to TGC and QGC. At O(p4) there are 4 possible CP-conserving TGC

couplings and 5 QGC14, but not all can arise from L
6

. We already encountered one with the same
Lorentz structure as in the SM:�LgZ1

that led to Eq. (21). Other contributions could in principle

arise from L
6

operators containing covariant derivatives and/or field-strengths. However, by
integration by parts and using the EOM, one can reduce them to dimension-6 operators with
only field-strengths 2. The only operators at O(p4), made of field-strengths and contributing to
EWSB, are

ĥ2⌘aW a
µ⌫B

µ⌫ , ĥ4⌘a⌘bW a
µ⌫W

b µ⌫ . (24)

The second one involves four Higgs and cannot arise from dimension-6 operators, while the first
one gives

ĥ2⌘aW a
µ⌫B

µ⌫ = ĥ2
h
Ŵ 3

µ⌫B
µ⌫ + 2igc✓WW�

µ W+

⌫ (Aµ⌫ � t✓WZµ⌫)
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. (25)

The second term clearly contains a new dipole-type TGC for the W , that can be identified with
�� of Ref. 8. Since Eq. (25) also contains contributions to other BSM primaries (such as the
S-parameter and h ! ��, Z�), we must arrange a linear combination that does not project into
them. We find that

�L� =
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2(t✓WAµ⌫ � t2✓WZµ⌫)

+
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gives us the combination that we were looking for: it projects into a new BSM primary e↵ect,
the TGC �� 8, but not into previous ones.

eFour-fermion interactions in L6 (which have no direct relation with Higgs physics and can therefore be studied
separately) a↵ect the value of GF as extracted through the measurement of µ-decay. For this reason the traditional
choice of using GF to fix one input parameter is less convenient than the one we propose here.

arXiv:1405.0181	

arXiv:1406.6376Correlations with triple gauge couplings (TGC):
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for leptons, and similarly for quarks:
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Notice that, as discussed above, modifications to the W couplings are explicitly related to
modifications to the Z couplings.

It remains to consider the independent e↵ect of the first term of Eq. (14). We consider it in
the following linear combination (that includes also terms of Eq. (13)):
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(19)
where Jµ

Z = Jµ
3

�s2✓W Jµ
em. Why this particular combination? This is obtained by performing the

EM-preserving shift

s2✓W ! s2✓W (1 + 2�gZ
1 c2✓W ĥ2/v2) (keeping e constant) , (20)

only in the SM gauge-couplings of the fermions and ĥ. In the vacuum ĥ = v (freezing the Higgs
h), the e↵ects in Eq. (19) can only be probed as a relative di↵erence of s✓W as measured in

the fermion and ĥ sector (V ff couplings and gauge-boson masses), with respect to the value
as measured in interactions involving gauge bosons only. Therefore it requires the knowledge
of TGC/QGC. Indeed, by field redefinitions, the non-Higgs physics part of Eq. (19) can be
rewritten as a contribution to the VWW coupling (gV ) and V V 0WW coupling (gV V 0
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This explicitly gives
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where �gZ
1 has been chosen to match the TGC definition of Ref. 8. Eq. (19) gives however also

a contribution to the custodial-preserving hV V coupling that defines one of our BSM primary,
�gh

V V . To eliminate this, we redefine �gh
V V ! �gh
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1 c2✓W in Eq. (11), that gives an

extra contribution proportional �gZ
1 to be added to Eq. (19). The final result is
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The interesting property of our parametrization in Eqs. (17,18,22) is the following. Since
BSM-e↵ects to SM propagators can always be eliminated through the equations of motion
(EOM), there is a one to one correspondence between each of the �gZ

f of Eqs. (17,18) and

the corresponding �(Z ! ff) partial-width measured at LEP1 9. d Therefore all the 7 param-
eters �gZ

f can be bounded at the per-mille level by Z decay-widths and asymmetries at LEP1,

dThis is true in the limit in which mf is neglected, so that interference with dipole-type BSM e↵ects vanishes.

custodial breaking hVV-coupling 	
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