

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Wie funktioniert ein Beschleuniger?

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Erzeugung hoher elektischer Felder I

Statische E-Felder (mit immer höherer Spannung...)

- Van de Graaff Bandgenerator (Robert J. Van de Graaff, 1929)
 - höchste jemals erreichte Spannung: 25.5 MV (Oak Ridge)
- Cockcroft-Walton Generator (John D. Cockcroft und Ernest T. S. Walton, 1932), Nobelpreis 1951
 - Spannungsvervielfacher
 - wandelt niedrige Wechselspannung in hohe Gleichspannung durch Netzwerk aus Dioden und Kondensatoren

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Erzeugung hoher elektrischer Felder II

→ statische Felder sind beschränkt auf wenige 10 MV → zu wenig

- Besser: zeitlich variable Felder, mehrfach ausnutzbar!
 - erster Vorschlag von Rolf Wideröe 1929
 - Lineare Struktur mit "Driftröhren" + HF Oszillator (erster LINAC)

- je länger die Gesamtstrecke, je höher die Energie

...aber man dachte, daß Linearbeschleuniger unrealistisch lang werden bei höherer Energie...

- 🕳 Lösung:
 - führe die Teilchen im Kreis herum durch Ablenkung mit starken Magnetfeldern

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Das Zyklotron

angeregt durch Wideröe's Veröffentlichung über die Verwendung von zeitlich variablen Feldern

Zyklotron (Ernest O. Lawrence 1931, Nobelpreis 1939)

 erster Kreisbeschleuniger

erster Prototyp zur Machbarkeit (Kosten: 25 \$): 13 cm (4-inch) Durchmesser, 80 keV Energie (HF: 10 W, 2 kV)

- größere Maschinen in schneller Folge
 - nicht-relativistisch: 11-inch, 27-inch, 60-inch (16 MeV)
 - . relativistisch: 184-inch Synchro-Cyclotron (CERN, 350 MeV)

variable HF Frequenz

- aber: Energie beschränkt durch Magnetgröße

konstantes Magnetfeld, variabler Radius der Teilchenbahnen

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Transport von Teilen des Synchrozyklotrons zum CERN (1956)

Das Synchrotron

- konstanter Radius, Magnetfeld muß mit Energie ansteigen
 - (fast) alle Beschleuniger für hohe Energien > 1 GeV sind Synchrotrons
- Erster Vorschlag 1943 von Mark Oliphant und später von Edwin M. McMillan (LBL)
 - 1946 erster Test des Konzepts am Malvern Research Lab (GB) sehr bald Synchrotrons mit immer höherer Energie
- 1953 Cosmotron (3.3 GeV, BNL)
- 1954 Bevatron (6.3 GeV, LBL)
 - "Beva" für Billion eV (Milliarde eV) Antiproton Entdeckung 1955
 - riesige Magnete
 - Gewicht ~ 10'000 t, grosse Magnetöffnung..

(Kreis-)Beschleuniger erfordern Fokussierungsmechanismus!

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Schwache Fokussierung

- Magnetische Fokussierung treibt Teilchen zurück, die vom zentralen Orbit abweichen
- Nur "Schwache" Fokussierung in frühen 1950ern (Cosmotron, Bevatron)
 - Ablenkmagnetfelder sind NICHT homogen

cut through bending magnets

- Vertikale, rücktreibende Kraft bei Abweichung vom zentralen Orbit
- Oszillationen um den zentralen Orbit

 Amplitude β abhängig von Fokussierungsstärke

schwache Fokussierung = große Amplitude

Betatron" Oszillationen

große Vakuumkammern und riesige Magnete

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

F

Starke Fokussierung

Maximale Energie bei schwacher Fokussierung ist beschränkt

-- "10x Bevatron" Beschleuniger würde ~ 200'000 t Eisen erfordern

- Fokussierung kann nicht stärker werden
- größerer Feldgradient = stärkere (vertikale) Fokussierung, aber: zu inhomogenes Feld in horizontaler Ebene (keine horizontale Fokussierung mehr)

1952 neue Art von starker Fokussierung

(Ernest D. Courant, Milton Stanley Livingston und Hartland S. Snyder)

- Alternating Gradient (AG) Synchrotron

۵

= wechselnde Abfolge von fokussierenden und defokussierenden Magneten in vertikaler/horizontaler Ebene

im Mittel(!) fokussierende Kraft stärker als defokussierende

"Combined function" Magnete = ablenkend + (de)fokussierend

1954 erstes AG Synchrotron (Cornell, 1.5 GeV, e⁻)

1958 erstes deutsches 500 MeV e⁻ AG synchrotron in Bonn (Wolfgang Paul)

1959 CERN PS, 28 GeV Protonen (noch immer benutzt...)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Typischer Hochenergie Beschleuniger

Getrennte ablenkende + (de)fokussierende Magnete

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Collider

Der allererste collider (e+e-)

- ADA (Anello di Accumulazione) in INFN Frascati
 - 1961 1964, 2 x 250 MeV, r = 65 cm(!)
 - ca. 10⁷ gespeicherte Teilchen
- viele andere folgten...
 - ADODE, SPEAR, DORIS, PEP, PETRA, SLC, LEP
- --- ISR (Intersecting Storage Rings) 1971 1984
- (Anti-)Protonen
 - Proton Antiproton: SppS, Tevatron
 - Proton Proton: LHC
- weltweit ca. 17'000 Beschleuniger

- mehr als die Hälfte für medizinische Zwecke (Diagnostik, Therapie)
- 42 für Synchrotronstrahlung, angewandte Forschung (weitere ~30 im Bau)
- ~130 für Grundlagenforschung (CERN, DESY,...)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Luminosität

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Der LHC: ~30 Jahre... und länger...

Idee 1984: LHC über

existierenden LEP Beschleuniger

1990

1984: Erste Ideen zum LHC (2 x 5..9 TeV) und SSC (2 x 20 TeV), LEP Tunnelbau beginnt

1988: SSC genehmigt (Waxahachie, Texas)

1989: Erste Kollisionen bei LEP und SLC, F&E für LHC Detektoren beginnt

1993: SSC Bau gestoppt!!!

1994: LHC genehmigt (geplanter Start 2005)

1995: Entdeckung des top Quark am Fermilab durch CDF (und D0), **ATLAS und CMS genehmigt**

1998: Beginn des LHC Baus

2000: Ende von LEP, kein Higgs gefunden...

2008: LHC Start

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Plan 1990:

LHC Start 1998...

ØØ

LHC

.EP

LARGE HADRON COLLIDER

1984

LHC Parameter

Energie = 7 x Tevatron, Luminosität = ~ 50 - 100 x Tevatron

	LHC (2008)	Tevatron (1987)	SppS (1981)
max. Energie (TeV)	(7)	(1)	0.450
Umfang (km)	26.7	6.3	6.9
Luminosität (10 ³⁰ cm ⁻² s ⁻²)	10000	210	6
Zeit zwischen Kollisionen (µs)	0.025	0.396	3.8
Kreuzungswinkel (µrad)	300	0	0
p/Strahlbündel (10 ¹⁰)	11	27/7.5	15/8
Anzahl Strahlbündel	2808	36	6
Strahldurchmesser (µm)	16	34/29	36/27
Füllzeit (min)	7.5	30	0.5
Beschleunigung (s)	1200	86	10

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

LHC in Zahlen

1232 Dipole, 8.33 Tesla @ 7 TeV bei 11850 A

- -> + 392 Quadrupole
- -> + 3700 Multipol-Korrektur-Magnete + 2500 andere Korrektur-Magnete
- 1200 Tonnen NbTi supraleitendes Kabel mit 7600 km Länge
- gespeicherte Energie im Magnetfeld 10 GJ (1/2 LI²)
- gesamte Kaltmasse: 30'000 Tonnen
 - 120 Tonnen suprafluides Helium (1.9 K) zur Kühlung
 - Energie für Quench: $0.5 20 \text{ mJ/cm}^3 = 10^7 \text{ Protonen bei 7 TeV}$

Anzahl der Stromverbindungen zwischen Magneten

- 10'000 supraleitende Verbindungen zwischen Dipolen
- 50'000 Verbindungen für Korrektur-Magnete
- Vakuum: 10⁻¹⁰ mbar = 3 Millionen Moleküle pro cm³

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Proton – Proton Kollisionen^(*) im LHC

- (*)LHC kann auch schwere Bleikerne (Schwerionen) beschleunigen und kollidieren lassen
 - Spezialexperiment für Schwerionenphysik: ALICE

Proton – Proton (Design Parameter)

2808 x 2808 Protonenbündel (bunches) mit 7.5 m Abstand (25 ns zeitlich) 1.1 x 10¹¹ Protonen/Bündel

~10⁹ pp Kollisionen/s

= Überlagerung von ~20...30 pp-Kollisionen pro Strahlkreuzung: pile-up

~1600 geladene Teilchen im Detektor pro Strahlkreuzung

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

LHC Dipole

2 kleine Strahlen in einem Magnet

Größe der Vakuumkammer und Strahlgröße

sehr kleine Öffnung (kleine Vakuumkammer) = kompakter Magnet = geringere Kaltmasse

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

LHC Tunnel

Umfang: 27 kmDurchmesser: 3.8 m

Umfangreiche Spitzentechnologien

- Supraleitung
- Magnete
- Vakuum
- Hochfrequenz
- Strahlkontrolle
- Sicherheit

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

gespeicherte LHC Strahlenergie

- → 2808 Teilchenbündel, 1.1 x 10¹¹ Protonen/Bündel @ 7 TeV
- 350 MJ gespeicherte Energie pro Protonstrahl

Größtes Problem bei LHC ist die Kontrolle der gespeicherten Energie

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren Michael Hauschild - CERN, Seite 18

Der LHC Beam Dump

- So MJ Beamenergie müssen in ~250 µs abgebaut werden (3 Umläufe)
 - --- instantane Strahlleistung auf dump = 1.4 TW
- Strahl Absorber aus Graphit
 - -- Schmelzpunkt ~ 3700 °C
 - → Aufheizung bis ~1250 °C
- Auch notwendig
 - "dilution kicker"
 - Strahl trifft spiral-förmig auf

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

CERN Beschleuniger Komplex

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

LHC Betriebsmodus

minimale Zeit von Ende eines Kollisionsruns bis Beginn des nächsten: 1.5 Stunden

dann Datennahme mit Kollisionen über ~10 Stunden oder mehr

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Methoden der Teilchenphysik

- Dies nutzen wir bei einem Teilchenbeschleuniger
 - → Protonen werden beschleunigt ⇒ Energie
 - Umwandlung der Energie bei der Kollision in Materie
 - Neue Teilchen entstehen (neue Materie) und müssen vermessen werden

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Der perfekte Detektor...

- ...sollte Teilchenwechselwirkungen jeder Art mit 100%
 Effizienz und beliebiger Genauigkeit aufzeichnen
 = Messung von Impuls + Energie aller Teilchen
 - aber beschränkte Effizienz, Impuls- + Energieauflösung bei echtem Det.
 - nicht alle Teilchen werden nachgewiesen, einige verlassen den Detektor ohne Signal (Neutrinos), einige verschwinden durch nicht-sensitive Teile (Raum für z.B. Kühlung, Gasrohre, Kabel, Elektronik, Mechanik usw.)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Aufgabe von Teilchendetektoren

Impulsmessung: Spurdetektor (Tracker)

- nah am Kollisionspunkt: Vertexdetektor (meist Silizium-Pixeldetektoren)
 - bestimmen Kollisionspunkt (Primärvertex) und sekundäre Vertices von Zerfällen
- Hauptspurdetektor
 - Impulsmessung über Krümmung im Magnetfeld
 - 2 Technologien: Silizium-Streifendetektoren (CMS) oder Gas-basierte Detektoren

Energiemessung: Kalorimeter

- --- Elektro-magnetische Kalorimeter
 - **Energiemessung von leichten Teilchen** (Elektronen, Positronen, Photonen) durch Erzeugung und Nachweis eines elektro-magnetischen Schauers
 - 2 Konzepte: homogenes (CMS) oder "sampling" Kalorimeter (ATLAS)
- Hadronkalorimeter
 - Energiemessung von schweren Teilchen (Hadronen = Pionen, Kaonen, Protonen, Neutronen) durch Erzeugung eines Schauers ausgelöst durch starke Wechselwirkung

Myon-Identifizierung Impulsmessung

-> äußere Detektorlagen, Spurdetektor mit Magnetfeld

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Ein typischer Teilchendetektor

Schnitt durch den CMS Detektor

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Impulsmessung

Geladene Teilchen werden durch Magnetfelder abgelenkt

-- homogenes B-Feld \perp Teilchen bewegt sich auf einem Kreis mit Radius r

$$p_t[GeV/c] = 0.3 \cdot B[T] \cdot r[m]$$

Messung von *p*^{*t*} über Messung des Radius

- Transversalimpuls p_t = Impulskomponente ⊥ zum Magnetfeld
 - keine Ablenkung || zum Magnetfeld
- → mit longitudinaler Impulskomponente
 → Teilchenspur ist eine Helix

Gesamtimpuls p über p_t und Messung des Winkels λ

$$p = \frac{p_t}{\sin\lambda}$$

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Spurdetektoren

- hauptsächlich 3 verschiedene Technologien

gas-basierte Detektoren

- Ionisation im Gas
 - typisch ~100 e⁻/cm nicht ausreichend für genügend große Signalhöhe über Verstärkerrauschen
- erfordert Gasverstärkung ~10⁴ für ausreichende Signalhöhe

Halbleiterdetektoren (Siliziumdetektoren)

- -> Erzeugung von Elektron Loch Paaren im Halbleiter
 - typisch ~100 e⁻ Loch Paare/µm
- 300 µm dicker Halbleiter genügend für ausreichendes Signal ohne Gasverstärkung, 20'000 – 30'000 Elektronen

Glasfaserdetektoren

- Fasern aus Plastikszintillatormaterial
 - Nachweis des Szintillationslicht mit Photondetektor (empfindlich auf Einzelelektronen)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Geiger-Müller Zählrohr

Erfunden durch Hans Geiger und Walther Müller 1928

- --- Rohr mit Edelgasfüllung (He, Ne, Ar) + Zusatzgas (z.B. Methan)
- Dünner Draht im Zentrum (20 50 µm Ø), Hochspannung (einige 100 Volt) zwischen Draht und Rohrwandung

- Gasionisation durch Teilchen
 - Elektronen driften zum Draht
- Starkes Anwachsen des E-Feldes in Drahtnähe
 - Elektronen erhalten mehr und mehr Energie
- oberhalb Schwelle (ca. >10 kV/cm)
 - Elektronenergie ausreichend für weitere Gasionisation
 - neue Elektronen ionisieren ebenfalls
- Lawineneffekt: exponentielle Zunahme von Elektronen (und Ionen) um O(10⁴)

messbares Signal am Draht

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Driftkammer

Geiger-Müller Zählrohre liefern nur Ja/Nein Information

- Teilchenspur durchfliegt das Rohr oder nicht, keine Positionsinformation innerhalb des Rohrs
- → bessere Auflösung → kleinere Rohre→ mehr (und mehr) Drähte...

größere Spannkräfte (schwerer Halterahmen nötig), mehr Material...

- Lösung von A. H. Walenta, J. Heintze, B. Schürlein 1971
 - Positionsinformation aus Driftzeit der Elektronen (weniger Drähte)
 - Driftzeit = Zeit zwischen Teilchendurchgang und Elektronenankunft am Draht

Startsignal (Teilchendurchgang) aus externer Quelle: Szintillator oder Beschleuniger Synchronisationssignal

Abstand Spur – Draht aus Driftzeit und Driftgeschwindigkeit v_D

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Halbleiter Spurdetektoren

Grundelement eines Halbleiterdetektors ist... eine Diode

- p-Typ und n-Typ dotiertes Silizium ist miteinander verbunden

Erzeugung einer Verarmungszone um die n/p Verbindung

- Ladungsträgerfreie Zone
 - keine Elektronen, keine Löcher
 - Dicke der Verarmungszone abhängig von Spannung und Dotierungskonzentration

geladene Teilchen können neue Elektron/Loch Paare erzeugen, ausreichend für nachfolgende Verstärkung

typisch 20'000 – 30'000 Elektron/Loch Paare in 300 µm dickem Material

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Siliziumstreifendetektor

Große Siliziumscheibe, z.B. 10 x 10 cm², 300 µm Dicke

untere Elektrode p-typ

obere Elektrode n-typ und unterteilt in viele Streifen mit kleinem Abstand

> viele Diode nebeneinander (ähnlich MWPC bei Drahtkammern) mit Positionsinformation

 Vorteile gegenüber gas-basierten Drahtdetektoren

- Streifendichte kann sehr viel höher sein (z.B. ~20 µm)
 - hohe Positionsgenauigkeit

+

۵

aber auch viele elektronische Kanäle nötig

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Si-Det. Elektronik + Si-Pixeldetektor

- Siliziumstreifendetektoren haben seeehr viele elektronische Kanäle, jeweils ~10⁷ Kanäle bei ATLAS und CMS
 - erfordert hochintegrierte Chips zur Verstärkung, Signalformung, Nullenunterdrückung (nur Streifen mit Signalen werden ausgelesen) und Multiplex-Technik (Streifensignale werden auf nur wenige Kabel verteilt)
 - Elektronik ist direkt mit der Sensorfläche (Vielfach-Diode) verbunden über kleine Drahtbrücken (wire bonds)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren Michael Hauschild - CERN, Seite 32

ATLAS Inner Tracker

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

CMS Siliziumspurdetektor

- 3 Lagen Si-Pixel
- 10 Lagen Si-Streifen
 - 210 m², größter jemals gebauter Si-Detektor

Tracker Inner Barrel TIB

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Myondetektoren

Myondetektoren sind Spurdetektoren (z.B. Drahtkammern)

- bilden die äußeren Lagen der (LHC) Detektoren
- sind nicht ausschliesslich empfindlich f
 ür Myonen (registrieren auch andere geladene Teilchen)!
- per "Definition": wenn ein Teilchen den Myondetektor erreicht hat, wird es als Myon betrachtet
 - alle anderen Teilchen sollten im Kalorimeter absorbiert worden sein
- Anforderungen an Myondetektoren
 - Abdeckung großer Fläche
 - mechanische Stabilität

ATLAS

Aluminiumrohre mit zentralem Draht gefüllt mit 3 bar Gas

- 1200 Kammern mit 5500 m²
- erfordert präzise Karte des (inhomogenen) Magnetfelds

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

ATLAS Myondetektorelement

Kalorimeter Konzepte

Homogenes Kalorimeter

۵

- Schauerbildung in aktivem Absorbermaterial = Detektor
 - Bildung eines elektro-magnetischen Schauers in optisch transparenten Absorber
 - Erzeugung von optischen Photonen durch Szintillation oder Čerenkovstrahlung
 - Nachweis durch optischen Photodetektor

 Schichten von passivem (schweres) Absorbermaterial (Eisen, Messing, Blei, Wolfram, Uran) mit dazwischen liegenden Detektoren

Homogenes Kalorimeter

Vorteil: gute Energieauflösung

- gesamter Schauer im aktiven Detektormaterial
 - keine Teil des Schauer geht im passiven Absorbermaterial verloren

Nachteil

۵

- beschränkte Granularität, keine Information über Schauerposition und -größe in Längsrichtung
 - Positionsinformationen nützlich zur Trennung von eng beieinander liegenden Energieclustern, z.B. 2 Photonen aus π^0 Zerfällen

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

"Sampling" Kalorimeter

- Typisches Absorbermaterial: Eisen, Blei
- Detektortechnologien sehr verschiedenartig
 - --- Gasdetektoren (MWPCs), Plastikszintillator, flüssige Edelgase (LAr, LKr)
- ATLAS verwendet LAr mit "Akordeon"-artigen Stahlabsorbern
 - Akordeonstruktur vermeidet "tote" Zonen (Kabel usw.)

- LAr wird durch geladene Schauerteilchen ionisiert
- Sammlung der Ladung an Pads
 - Prinzip einer Ionisationskammer, keine weitere Verstärkung
 - Padform nach Wunsch → hohe Granularität

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Selektion interessanter Kollisionen?

- Kollisionsrate: 40 MHz, mit ~20 Wechselwirkungen (10⁹ events/s)
 - -> Mögliche Aufzeichnungsrate: ~300 Kollisionen/s (~450 MB/s),
- Hocheffizienter TRIGGER (schnelle Auswahl) nötig
 - Rohdaten (1 PB/s) werden in pipeline gespeichert bis Trigger Entscheidung

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren Mic

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren Michael Hauschild - CERN, Seite 40

Anforderungen an LHC Detektoren

- Kollisionen bei höchsten Energien
 - gute Impulsauflösung bis hin zur TeV Skala
- Hohe Luminosität (große Kollisionsrate)
 - Schnelle Detektoren (nur 25 ns zwischen den Kollisionen)
- Große Teilchendichte
 - hohe Granularität, ausreichend kleine Detektorelemente
- Hohes Strahlungsniveau (viele stark wechselwirkende Teilchen)
 - Strahlung hauptsächlich durch die Kollisionsteilchen, nicht durch LHC Untergrund

GROßE Kollaborationen!!!

- -> ~O(3000) Physikers jeweils in ATLAS und CMS
- Kommunikation, soziologische Aspekte
 - exponentieller Anstieg von Meetings, Telefon + Video Konferenzen...

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

ATLAS (A Toroidal LHC ApparatuS)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

CMS (Compact Muon Spectrometer)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Magnetkonzepte der LHC Experimente

Solenoid (mit Magneteisen)

- + großes homogenes Feld innerhalb der Spule
- benötigt Eisenrückflußjoch (magn. Kurzschluß)
- begrenzte Größe (Kosten)
- Spulendicke (Strahlungslängen)

CMS, ALICE, LEP Detektoren

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Toroid (Luftspule)

- + kann großes Volumen abdecken
- + Luftspule, keine Eisen, wenig Material
- benötigt weiteren kleinen Solenoid für Hauptspurdetektor
- kein homogenes Feld
- sehr komplexer Aufbau

ATLAS

ATLAS und CMS Spulen

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Vergleich ATLAS – CMS

Unterschiedliche Detektorkonzepte der beiden großen LHC Detektoren (beabsichtigt bei Genehmigung)

-> ATLAS

- kleiner Hauptspurdetektor mit mittelgroßem Magnetfeld (kleiner 2 T Solenoid)
- Elektron-Identifizierung mittels Übergangsstrahlungsdetektor
- sampling Kalorimeter mit hoher Granularität ausserhalb des Solenoid
- Toroidspulen (Luftspulen) für gute Myon Impulsmessung

Betonung auf granulares Kalorimeter und gute Myonmessung

- CMS

- großer Hauptspurdetektor mit hohem Magnetfeld (großer 4 T Solenoid)
- kein Spezialdetektor für Elektron-Identifizierung
- homogenes Kristallkalorimeter mit guter Energieauflösung immerhald des Solenoid

Betonung auf gute allgemeine Spurmessung und gute Energieauflösung

Trotz unterschiedlicher Konzepte vergleichbare Leistungsfähigkeit bei der Physikanalyse

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Absenkung des 2000 t CMS Mittelteils

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

ATLAS unterirdische Kaverne

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Beginn des ATLAS Detektoraufbaus

Transport und Absenkung der ersten supraleitenden Barrel Toroid Spule

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

ATLAS Barrel Toroid fertiggestellt (Nov 2005)

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Detektortechnologie und Kunst

Bühnenbild der Oper "Les Troyens" in Valencia, Oktober 2009

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Was sollte man wissen?

Beschleunigung von Teilchen erfolgt über elektrische Felder

- = nur elektrisch geladene Teilchen können beschleunigt werden
- Elektro-magnetische Wellen (hochfrequente Radiowellen) werden in eine Beschleunigerstrecke eingespeist. Das elektrische Feld der Radiowellen erzeugt die Beschleunigung.
- Bei Ringbeschleunigern lenken Magnetfelder die Teilchen herum und führen sie zurück zur Beschleunigerstrecke
 - Magnetfelder beschleunigen nicht und erhöhen nicht die Energie der Teilchen
 - Hohe Geschwindigkeit bzw. hohe Energie wird erreicht durch vielfaches, wiederholtes Beschleunigen in der Beschleunigungsstrecke
 - Bei Geschwindigkeiten nahe der Lichtgeschwindigkeit nimmt die Geschwindigkeit nur noch wenig zu, nur die Energie der Teilchen erhöht sich
 - Teilchen werden relativistisch und erfahren eine Massenzunahme (= höhere Energie), aber keine wesentliche Geschwindigkeitserhöhung
 - Die Frage: "Wie nah sind die Teilchen an der Lichtgeschwindigkeit?" stellt sich Teilchenphysikern nicht wirklich, es zählt die Energie der Teilchen

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren

Was sollte man wissen?

Aufgabe von Teilchendetektoren

Vermessen einer Teilchenwechselwirkung mit möglichst hoher Effizienz und Vollständigkeit: Impuls + Energie aller Teilchen

Impulsmessung (Spurdetektor)

- innerste Detektorlage, Spurpunkte entlang der Teilchenbahn
- gas-basierte und Silizium-Halbleiterdetektoren
- Impulsmessung über Krümmung im Magnetfeld
- Myondetektoren als äusserte Detektorlage

Energiemessung (Kalorimeter)

- schweres Detektormaterial, Bildung und Nachweis eines Teilchenschauers
- elektro-magnetisches Kalorimeter: leichte Teilchen (Elektronen, Positronen, Photonen)
- Hadronkalorimeter: schwere Hadronen (Pionen, Kaonen, Protonen, Neutronen)
- homogenes Kalorimeter: gute Energieauflösung, "sampling": Schauerprofil + -Position

LHC Detektoren

۵

- unterschedliche, komplementäre Detektorkonzepte
- sehr hohe Primärdatenrate, benötigt effizienten Trigger zur Filterung
- Datenspeicherung und Auswertung im Grid

Lehrerfortbildung Kloster Jakobsberg 4.12.2014 – Beschleuniger + Detektoren