Imperial College London

K. Long, 13 November, 2014

# Spokesman's update

### **Contents:**

Update

Ionization cooling demonstration

[with reacceleration]

RLSR, MPB and FAC

[24&25 November 2014]

VCs & CM41

## Spokesman's update

# **Update:**

## **Update: MICE Hall; tracker, PRY and services:**



PRY:

- Preparation for installation of bases and restraints advancing:
  - Expect to be bolting steelwork in place by the end of November

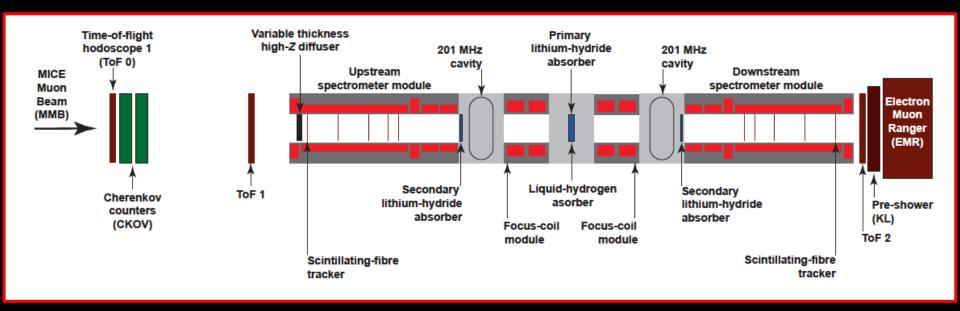


See J.B. Lagrange's contribution

### Spokesman's update

## **Demonstration of ionization cooling**

[with reacceleration]


## Reprise: 1 slide from August DOE debrief:

VC 22Aug14

## Going forward; my view:

- Support preparation of document as requested in the DOE by 15Sep14:
  - Initial "good enough) analysis of Step 3pi/2;
  - Initial analysis of cost/schedule/risk;
- The revised plan is further developed and "put before" the collaboration at its next meeting (24-28Oct 2014):
  - By this time the necessary detailed studies to assess the level of performance will have been done carefully and the collaboration will have had time to deliberate;
- The next international review of the project (Nov 2014):
  - Resource Loaded Schedule Review panel; and the
  - MICE Project Board
- will then review the consensual revised plan and present to the Funding Agency Committee their recommendations
  - If we do our work properly I would anticipate that the recommendations will be in line with the our analysis

# Ionization cooling demonstration:



- ... or demonstration of ionization cooling:
  - If you must abbreviate:
    - Cooling demo
- Studies so far reported in:
  - -MICE Note 452
- Excellent work!

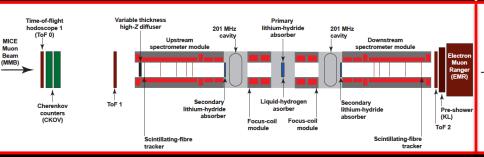
### **Criteria:**

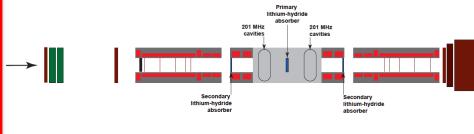
### Priority-ordered criteria that came out of CM40:

### 1. 4D emittance reduction; transmission/scraping:

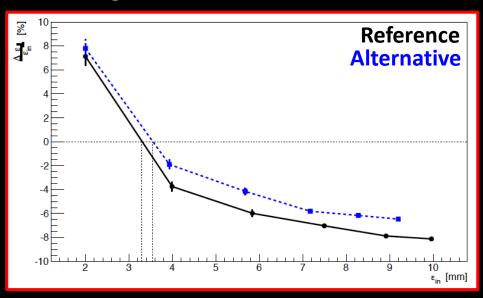
- Have not (yet) studied full simulation/reconstruction;
- Therefore essential that adopted configuration that produces largest 4D cooling effect; best chance for systematic study.

### 2. 6D emittance reduction:

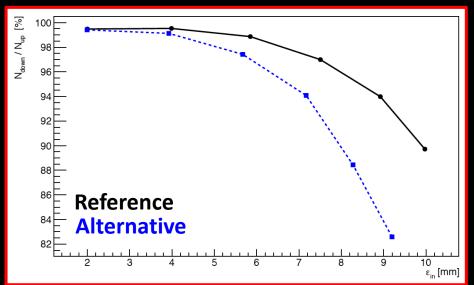

- Largest change in 6D emittance presented at the CM at ~1% level;
  - Confirmed for reference and alternative since; still under study;
  - Very large data sets likely to be needed to measure such a small effect;
  - 6D emittance reduction is a desirable, rather than essential.


#### 3. Lattice cell:

- MICE approved to demonstrate "realistic" section of cooling channel;
- Ideally cell constructed would be part of an extended cooling channel;
- Implies appropriate matching criteria;
  - Applied in developing reference/alternative
- Lattice cell suitable for incorporation extended channel desirable


## **Performance:**

#### **Reference | Alternative**






#### **4D** cooling



#### **Transmission**



- Reference lattice therefore confirmed:
  - Studies of 6D performance in hand:
    - · Indication is that performance of reference and alternative very similar
  - Would need substantial performance advantage for alternative to displace reference

### **Currents:**

Table 4: Coil currents used for  $(\varepsilon_{\perp}, p_z) = (6, 200)$  MAUS simulations in the [+ + --] configuration. Coils are defined in Table 1.

| Coil            | Reference Lattice (A) | Alternative Lattice (A) |
|-----------------|-----------------------|-------------------------|
| Upstream E2     | +253.00               | +255.46                 |
| Upstream C      | +274.00               | +288.27                 |
| Upstream E1     | +234.00               | +239.37                 |
| Upstream M2     | +203.13               | +260.83                 |
| Upstream M1     | +240.61               | +230.94                 |
| Upstream AFC1   | +77.86                | +69.81                  |
| Downstream AFC1 | +77.86                | +69.81                  |
| Upstream AFC2   | -72.94                | -67.85                  |
| Downstream AFC2 | -72.94                | -67.85                  |
| Downstream M1   | -218.39               | -210.32                 |
| Downstream M2   | -187.68               | -242.12                 |
| Downstream E1   | -234.00               | -239.37                 |
| Downstream C    | -274.00               | -288.27                 |
| Downstream E2   | -253.00               | -255.46                 |

#### • FC currents:

- FC1 and FC2 tested to 120A in solenoid mode:
  - Good!
- SS M1 and M2:
  - Reference lattice gives better margin for M2 in SSU

### Spokesman's update

## RLSR, MPB and FAC

[24 and 25 November 2014]

## **Documentation and presentations:**

#### **MICE** » Governance

Overview

Activity

Issues

Documents

#### 2014-11-24-Review



#### Documentation

- · Single PDF containing all files:
  - Concatenated pdf: 00-2014-11-11-All-files.pdf
- RLSR:
  - · 🗇 Resource loaded schedule, costs and risks for the completion of the MICE project
- · Response to feedback:
  - ¬Resource loaded schedule, costs and risks for the completion of the MICE project
- MPB:
- · Supporting documents:
  - The MICE Demonstration of Ionisation Cooling: Technical Note

  - Documentation of prioritised controls plan
  - Online support plan
  - Magnet commissioning at Step IV
  - Commissioning and operations at Step IV
  - ¬RF test plan and consideration of commissioning of ionization cooling demonstration
  - 🗇 Initial consideration of the running required for the demonstration of ionization cooling
  - Response to recommendations of DOE August 2014 review of MAP and MICE: DOE\_Response\_2014\_0925\_FINAL.pdf
  - Initial response (July 2014) to recommendations

# Documentation and presentations:

#### MICE » Governance Wiki Overview Activity Documents 2014-11-24-Review-preparation History DRAFT agendas - RLSR4, MPB8 & FAC RLSR, MPB-8 & FAC outline agendas - November 24 & 25, 2014 CR16 R80 Monday November 24th RLSR & MPB-8 outline agendas 09:00-09:45 RLSR closed session – introduction 09:45-10:15 Project overview — K. Long: 20' + 10' 10:15-12:45 RLSR presentations & questions 10:15-10:50 Schedule to completion and project risks — R. Preece: 25' + 10' 10:50-11:30 US project plan for MICE — M. Palmer: 30' + 10' 11:30-12:00 UK financial plan, risks — A. Grant: 20' + 10' 12:00-12:45 Unscheduled: 150' - 105' = 45' 12:45-13:15 Lunch 13:15-14:00 RLSR closed session – critical findings 14:00-15:30 Data taking, simulation & reconstruction 14:00-14:30 S/w&C overview — D. Rajaram: 20' + 10' 14:30-15:00 Online — P. Smith: 20' + 10' 15:00-15:30 MAUS (simulation and reconstruction) — A. Dobbs: 20' + 10' Unscheduled 90' - 90' = 0' 15:30-16:00 Closed session, report writing 16:00-17:30 SC magnets & RF 16:00-16:30 FCs — S. Watson: 20' + 10' 16:30-17:00 RF system overview and RF power — K. Ronald: 20' + 10' 17:00-17:30 Cavity modules, PRY and SS — A. Bross: 20' + 10' Unscheduled 90' - 90' = 0' 17:30-18:00 SC magnets & RF closed session 18:00 Adjourn Tuesday November 25th MPB-8 outline agenda 9:00-10:30 Commissioning, operations & control 09:00-09:35 Commissioning and operations overview — S. Boyd: 25' + 10' 09:35-09:50 MICE/ISIS liaison, the ISIS perspective — Z. Bowden: 10' + 5' 09:50-10:20 Controls and monitoring — P. Hanlet: 20' + 10' 10:20-10:30 Unscheduled 90' - 80' = 10' 10:30-11:30 Closed session, report writing 11:30-12:00 Close-out with MICE management

Papers:

| Table 2: Physics and technical papers being prepared by the collaboration. |                                  |  |  |
|----------------------------------------------------------------------------|----------------------------------|--|--|
| Title                                                                      | Lead authors                     |  |  |
| Step I physics                                                             |                                  |  |  |
| Electron Muon Ranger: performance in the MICE Muon Beam                    | A. Blondel, F. Drielsma, R. As-  |  |  |
| Wise people appointed                                                      | fandiyarov                       |  |  |
| Measurement of the pion contamination in the MICE Muon Beam                | D. Orestano, D. Nugent, P. Soler |  |  |
| Step IV physics                                                            |                                  |  |  |
| Commissioning of the MICE experiment in the Step IV configu-               | C. Rogers                        |  |  |
| ration                                                                     |                                  |  |  |
| Ionization cooling demonstration                                           |                                  |  |  |
| Design and expected performance of the MICE demonstration of               | V. Blackmore, J. Pasternak,      |  |  |
| ionization cooling                                                         | C. Rogers                        |  |  |
| Technical                                                                  |                                  |  |  |
| The MICE target upgrade                                                    | C. Booth                         |  |  |
| The design construction of the MICE Electron Muon Ranger                   | R. Asfandiyarov, A. Blondel,     |  |  |
|                                                                            | F. Drielsma                      |  |  |
| The Reconstruction Software for the MICE Scintillating Fibre               | S. Dobbs                         |  |  |
| Trackers                                                                   |                                  |  |  |
| The MICE Analysis and User Software framework                              | D. Ragaram                       |  |  |

## Prioritisation of Step IV data taking:

### Pressures:

- Completion and commissioning of Step IV;
- Start of reconfiguration for cooling demo;
- Staffing for safe operations 24/7 versus 16/5

| 1 | Detailed scan (with $\sim 20 k$ good muons per point) of the effect of empty, liquid-hydrogen and      |
|---|--------------------------------------------------------------------------------------------------------|
|   | lithium-hydride absorbers as a function of betatron function (9 points) at the nominal momentum        |
|   | of 200 MeV/c.                                                                                          |
| 2 | 1 & detailed scan (with $\sim$ 20k good muons per point) of the effect of empty, liquid-hydrogen and   |
|   | lithium-hydride absorbers as a function of momentum (9 points) at the (single) nominal betatron        |
|   | function $(\beta)$ of 420 mm.                                                                          |
| 3 | 1, 2 & 100k good muons per point muons at the nominal $\beta = 420$ mm, $p = 200$ MeV/c, scanning      |
|   | over emittance (3 points) with empty, liquid-hydrogen and lithium-hydride absorbers.                   |
| 4 | 1, 2, 3 & detailed scan (with $\sim 20$ k good muons per point) of the effect of liquid-hydrogen and   |
|   | lithium-hydride absorbers as a function of betatron function (9 points) and emittance (3 points) at    |
|   | the (single) nominal momentum of 200 MeV/c.                                                            |
| 5 | 1, 2, 3 & sampling of $3 \times 3$ emittance, momentum matrix at three betatron functions with reduced |
|   | sample size ( $\sim 25$ k good muons per point).                                                       |
| 6 | 1, 2, 3 & sampling of $3 \times 3$ emittance, momentum matrix at three betatron functions with reduced |
|   | sample size ( $\sim 50$ k good muons per point).                                                       |
| 7 | 1, 2, 3 & sampling of $3 \times 3$ emittance, momentum matrix at three betatron functions with reduced |
|   | sample size ( $\sim 100 k$ good muons per point).                                                      |

### Spokesman's update

VCs and CM41

## VCs and CM41:

- Video Conferences:
  - -11<sup>th</sup> December 2014
  - **—22<sup>nd</sup> January 2015**

- CM41:
  - -RAL: 9<sup>th</sup> to 13<sup>th</sup> February 2015