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Anomalies
 1)                        angular observables B ! K⇤µ+µ�

 2) Various branching ratios are low compared to the SM predictions

• Main sources of uncertainty: form factors, non-factorisable contributions from the hadronic 
weak Hamiltonian.

[Altmannshofer, Straub 1411.3161]

Decay obs. q2 bin SM pred. measurement pull

B̄0 ! K̄⇤0µ+µ� 107 dBR
dq2

[16, 19.25] 0.47± 0.05 0.31± 0.07 CDF +1.9

B̄0 ! K̄⇤0µ+µ� AFB [2, 4.3] �0.04± 0.03 �0.20± 0.08 LHCb +1.9

B̄0 ! K̄⇤0µ+µ� FL [2, 4.3] 0.79± 0.03 0.26± 0.19 ATLAS +2.7

B̄0 ! K̄⇤0µ+µ� S5 [2, 4.3] �0.16± 0.03 0.12± 0.14 LHCb �2.0

B̄� ! K̄⇤�µ+µ� 107 dBR
dq2

[4, 6] 0.50± 0.08 0.26± 0.10 LHCb +1.9

B̄� ! K̄⇤�µ+µ� 107 dBR
dq2

[15, 19] 0.59± 0.06 0.40± 0.08 LHCb +1.8

B̄0 ! K̄0µ+µ� 108 dBR
dq2

[0.1, 2] 2.71± 0.53 1.26± 0.56 LHCb +1.9

B̄0 ! K̄0µ+µ� 108 dBR
dq2

[16, 23] 0.93± 0.10 0.37± 0.22 CDF +2.3

Bs ! �µ+µ� 107 dBR
dq2

[1, 6] 0.39± 0.06 0.23± 0.05 LHCb +2.0

B ! Xse+e� 106 BR [14.2, 25] 0.21± 0.07 0.57± 0.19 BaBar �1.8

Table 1: Observables where a single measurement deviates from the SM by 1.8� or more. The
full list of observables is given in appendix B.

Since this coe�cient corresponds to a left-handed quark current and a leptonic vector current,
it is conceivable that a NP e↵ect in C9 is mimicked by a hadronic SM e↵ect that couples to
the lepton current via a virtual photon, e.g. the charm loop e↵ects at low q2 and the resonance
e↵ects at high q2 as discussed in section 2 (see e.g. [18]). In our numerical analysis, in addition
to the known non-factorizable contributions taken into account as described in section 2, sub-
leading e↵ects of this type are parametrized by the parameters ai, bi, ci in (10), (11), and
analogously for Bs ! �µ+µ�. Since they parametrize unknown sub-leading uncertainties, the
central values of these parameters are 0 in our SM predictions.

Any underestimation of a non-perturbative QCD e↵ect (not related to form factors) should
then manifest itself as a drastic reduction of the �2 for a sizable value of one of the parameters,
when treating them as completely free. To investigate this question, we have constructed a �2

function analogous to (15), but writing the central values ~Oth as functions of the parameters
ai, bi, ci instead of the Wilson coe�cients.

In fig. 1, we show the reduction of the �2 compared to our SM central value under variation
of pairs of these parameters, while treating two of them at a time as free parameters and fixing
all the others to 0. We show the cases of varying the coe�cients entering the B ! K`+`�

amplitude at low and high q2 (top); the coe�cients entering the � = � and � = 0 B ! K⇤`+`�

helicity amplitudes at low q2 (bottom left) and high q2 (bottom right). Corrections to the � = +
helicity amplitude are expected to be suppressed [23] and we checked explicitly that they have
a weak impact. On the green dashed contours, the �2 is the same as for the central value, so
there is no improvement of the fit. In the green shaded area, the fit is improved, with the solid
contours showing ��2 ⌘ �2 � �2

SM = 1, 4, 9, etc. In the unshaded region to the other side of
the dashed contour, the fit is worsened compared to the central value. The blue circles show
our 1 and 2� assumptions for the uncertainties on the parameters in question, as discussed
in section 2. We stress that these assumptions have not been used as priors to determine the
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 3) Hint of violation of lepton-flavour universality

Figure 5: Allowed regions in the Re(CNP
9 )-Re(C 0

9) plane (left) and the Re(CNP
9 )-Re(CNP

10 ) plane
(right). The blue contours correspond to the 1 and 2� best fit regions from the global
fit. The green and red contours correspond to the 1 and 2� regions if only branching
ratio data or only data on B ! K⇤µ+µ� angular observables is taken into account.

tension with the SM prediction

RK =
BR(B ! Kµ+µ�)[1,6]
BR(B ! Ke+e�)[1,6]

= 0.745+0.090
�0.074 ± 0.036 , RSM

K ' 1.00 . (23)

The theoretical error of the SM prediction is completely negligible compared to the current
experimental uncertainties. The tension between the SM prediction and the experimental data
is driven by the reduced B ! Kµ+µ� branching ratio, while the measured B ! Ke+e�

branching ratio is in good agreement with the SM. In our extended global fit we do not
use the RK measurement directly but instead include the B ! Kµ+µ� and B ! Ke+e�

branching rations separately, taking into account the correlations of their theory uncertainties.
As the theory uncertainties of BR(B ! Kµ+µ�) and BR(B ! Ke+e�) are essentially 100%
correlated, our approach is to a good approximation equivalent to using RK .
In fig. 6 we show the result of two fits that allow for new physics in Cµ

9 and Ce
9 (left plot) and

new physics along the SU(2)L invariant directions Cµ
9 = �Cµ

10 and Ce
9 = �Ce

10. Recall that
in section 3.3 we found that new physics in these scenarios gives the by far best description of
the experimental b ! sµ+µ� data. As expected, we again find that a Cµ

9 significantly smaller
than in the SM is clearly preferred by the fits. The best fit regions for Cµ

9 and Cµ
9 = �Cµ

10

approximately coincide with the regions found for C9 and C9 = �C10 in section 3.3. The
Wilson coe�cients Ce

9 and Ce
9 = �Ce

10 on the other hand are perfectly consistent with the
SM prediction. Lepton flavour universality, i.e. Cµ

9 = Ce
9 and Cµ

10 = Ce
10 as indicated by the

diagonal line in the plots is clearly disfavoured by the data. Our results are consistent with
similar findings in recent fits to part of the available experimental data [8, 9].
Working under the assumption that the electron modes are indeed SM like, we can make

predictions for ratios of observables that test lepton flavour universality using the best fit
regions for the muonic Wilson coe�cients from our global fit. We consider ratios of branching

19

RSM
K = 1.0003± 0.0001
Theoretically very clean!

[arXiv:0709.4174]



New Physics interpretation
• Minimal option: New Physics (NP) in the muon sector only.

• Short distance effects from NP are expected to generate a chiral currents

• Best fit is obtained for the current (bL�↵sL)(µL�↵µL) Cµ,NP
9 = �Cµ,NP

10

[Various groups]
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• Quantum numbers of the new states, uniquely 
determined by the structure of the current

[Hiller, Schmaltz arXiv:1408.1627]

⇧ ⇠ (3,3, 1/3)

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.

– 8 –

• Anomalies are fitted when 

• Scale of New Physics not predicted

|�⇤sµ�bµ|
M2

' 1
(48 TeV)2

700 GeV . M . 48 TeV

• An explicit model  
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Strong 
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Elementary 
sectorf ⇠ SM
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Theoretical Framework

Ô

g⇢, m⇢

⇧, H
Strong 
sector

Elementary 
sectorf ⇠ SM

m⇢

mH

m⇧

10 TeV

E

1 TeV

125 GeV

• Being PGBs, Higgs and Leptoquarks are lighter than the 
other resonances coming from the strong sector	

!

• SM fermion masses are generated by the mechanism of 
partial compositeness	

!
!
!
• BSM Flavour violation regulated by the same mechanism	

!

• Naturalness (…)

|SMi = cos ✏|fi + sin ✏|Oi

✏Ôf



Leptoquarks as PNGB
• Partial compositeness requires the presence of coloured composite states, plausible to 
expect coloured PNGB	

!

• Depending on the quantum numbers of the PNGB, diquark and leptoquark couplings are 
expected	


• Colour gauge group can be part of the symmetries of the strong sector (in analogy to the 
EW group)

Gripaios 0910.1789

Gripaios, Giudice, Sundrum 1105.3189
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• Coset structure (1,2, 1/2) + (3,3, 1/3) + (3,3,�1/3)

SO(9)! SU(4)⇥ SU(2)⇧
(⇧ + ⇧†) ⇠ (6,3)

SO(5)! SU(2)H ⇥ SU(2)R

H ⇠ (2,2)

SU(3)C ⇥ U(1) � SU(4)
SU(2)L = (SU(2)H ⇥ SU(2)⇧)D

TY = � 1
2T + T3R

• SM embedding

Agashe, Contino, Pomarol hep-ph/0412089
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Partial Compositeness in CH models
• Yukawa sector:

H

⇥L

⇥R

fL

fR

g�

⇥L

⇥R

fL

fR

g� fL

fR

g�

1/m2
�

⇥L

⇥R

Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y u
1 ⇤ Y u

3 ⇤ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y u
1 H̃Fu(H

†H/f2)
⇥
uR + q̄L

�
Y d
1 HFd(H

†H/f2)
⇥
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G ⇥ H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)�(yL
�)IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while � denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G� SU(2)W � U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator ⌃Oi
IfL

Oj
IfL

⌥ is
in general non zero for any i, j pair (similarly for Oi

IfR
). E�ective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y ij
1 , Y ij

2 and

13

Lelem = if�µDµf

L
comp

= L
comp

(g⇢, m⇢, H)

L
mix

= ✏L fLOL + ✏L fROR + h.c.

Y ij ⇠ ✏i
L✏j

Rg⇢Y ij = cij ✏i
L✏j

R g⇢

D. B. Kaplan (1991)
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G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as
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�)IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while � denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G� SU(2)W � U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator ⌃Oi
IfL

Oj
IfL

⌥ is
in general non zero for any i, j pair (similarly for Oi

IfR
). E�ective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y ij
1 , Y ij
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Partial Compositeness in CH models
• Yukawa sector:
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Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.
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Parameters
• Yukawas are given by 

• Parameters  

• Everything is fixed up to 2 parameters,

(g⇢, ✏
q
3)

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)
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u
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i , ✏
`
i , ✏

e
i , g⇢

• Physical input   mu
i , md

i , m
`
i , VCKM

3⇥ 5 + 1 = 16

3 + 3 + 3 + 2 = 11

• We will assume that left (    )  and right (    ) mixings have similar size✏`
i

✏e
i

relations

relations3

Fermion Mass

e 0.487 MeV

µ 103 MeV

⌧ 1.78 GeV

d 2.50+1.08
�1.03 MeV

s 47+14
�13 MeV

b 2.43± 0.08 GeV

u 1.10+0.43
�0.37 MeV

c 0.53± 0.07 GeV

t 150.7± 3.4 GeV

Figure 1. Values of running fermion masses at the scale µ = 1 TeV [40].

Mixing Parameter Value

✏q1 = �3✏q3 1.15⇥ 10�2 ✏q3
✏q2 = �2✏q3 5.11⇥ 10�2 ✏q3

✏u1 = mu
vg⇢

1
�3✏q3

5.48⇥ 10�4/(g⇢✏
q
3)

✏u2 = mc
vg⇢

1
�2✏q3

5.96⇥ 10�2/(g⇢✏
q
3)

✏u3 = mt
vg⇢

1
✏q3

0.866/(g⇢✏
q
3)

✏d1 = md
vg⇢

1
�3✏q3

1.24⇥ 10�3/(g⇢✏
q
3)

✏d2 = ms
vg⇢

1
�2✏q3

5.29⇥ 10�3/(g⇢✏
q
3)

✏d3 = mb
vg⇢

1
✏q3

1.40⇥ 10�2(g⇢✏
q
3)

✏`1 = ✏e1 =
⇣

me
g⇢v

⌘1/2
1.67⇥ 10�3/g1/2⇢

✏`2 = ✏e2 =
⇣
mµ

g⇢v

⌘1/2
2.43⇥ 10�2/g1/2⇢

✏`3 = ✏e3 =
⇣

m⌧
g⇢v

⌘1/2
0.101/g1/2⇢

Figure 2. Partial compositeness mixing parameters and values.

Evidently, this condition is implied by (but does not imply) our assumption that the left

and right leptonic mixings are equal.

In this way, we are able to fix all parameters in the lepton sector in terms of g⇢, and so

all the NP e↵ects of the model are parameterized by M , g⇢, and ✏3q . The phenomenological

inputs and the expressions of the various mixing parameters are summarised in Figs. 1

and 2.

We may now determine the leptoquark couplings, as follows. Similarly to [41], below the

scale of the strongly-coupled resonances we can describe the low energy physics by an
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Flavour Violation & Leptoquarks
• Comment later about the flavour physics associated with  m⇢

 Quarks

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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Processes generated by these operators are also present at tree level in the SM, so

NP contributions are not expected to be large relative to the SM predictions. The

largest NP rates will occur in processes with ⌧ or ⌫⌧ in the final state.

With these considerations in mind, in the remainder of this Section we discuss the

values of the model parameters that are needed to fit recent B-decay anomalies and then

list important constraints on the model and predictions for its e↵ects in other processes.
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We consider recent results of [20], in which a fit to all available data on muonic (or lepton-

universal) �B = �S = 1 processes is described. A part of that work involved allowing

one Wilson Coe�cient (or chiral combination thereof) to vary while assuming all other

coe�cients are set to their SM values (for details of the fit please see [20]). The best fit

value found in this way for the chiral combination relevant to our leptoquark is CNPµ
9 =
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CµNP
9 = �CµNP

10 =


4GF e2(V ⇤

tsVtb)

16
p
2⇡2

��1
�⇤
22�23

2M2
= �0.49 c⇤22c23(✏

q
3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘
,

(4.5)

and the requirements on the parameters are

Re(c⇤22c23) = 0.94

✓
4⇡

g⇢

◆✓
1

✏q3

◆2✓ M

TeV

◆2

(Best fit), (4.6)

Re(c⇤22c23) 2 [0.59, 1.31]

✓
4⇡

g⇢

◆✓
1

✏q3

◆2✓ M

TeV

◆2

(at 1�), (4.7)

Re(c⇤22c23) 2 [0.24, 1.71]

✓
4⇡

g⇢

◆✓
1

✏q3

◆2✓ M

TeV

◆2

(at 2�). (4.8)

.

Thus, if this anomaly is to be explained, there are 3 immediate implications for the

parameters of our model:

1. the mass of the leptoquark states should be low enough, M . 1 TeV, to be within

the reach of the second run of the LHC;

2. the left-handed doublet of the third quark family should be largely composite, ✏q3 ⇠ 1;
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Predictions
• We expect large effects coming from the third family of leptons
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Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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these processes, discussing implications of current measurements on our model, as well as

highlighting promising channels for probing our scenario with future measurements.

4.2.1 b ! s⌫⌫

Due to the SU(2)L structure of the leptoquark, it will couple to neutrinos as well as

charged leptons and thus induce b ! s⌫⌫ transitions. The importance of this channel in

general for pinning down NP has been recently emphasised in [45]. These B ! K⇤⌫⌫ and

B ! K⌫⌫ decays are good channels to look for large e↵ects from the composite leptoquark

we consider. Indeed, since the identity of the neutrino cannot be determined in these

experiments, large contributions from the processes involving tau neutrinos are expected

in our model. Thus our model predicts a much larger rate than that expected in models

where NP couples only to the second generation lepton doublet.

Current NP bounds from these decays can be found in [45], which are quoted in terms

of ratios to Standard Model predictions. With a slight alteration of the notation of [45],

so as not to cause confusion with the notation used here, the relevant quantities, and the

limits thereon, are

R⇤⌫⌫
K ⌘ B (B ! K⇤⌫⌫)

B (B ! K⇤⌫⌫)SM
< 3.7, (4.13)
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The leptoquark can in principle induce transitions involving any combination of neutrino

flavours, since it couples to all generations and also has flavour-violating couplings. There

will be interference between NP and SM processes only in flavour-conserving transitions.

The NP contributions to the ⌫⌧⌫⌧ and ⌫µ⌫µ processes will induce a shift from unity in R⌫⌫
K
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K given by

�(R(⇤)⌫⌫
K )⌧⌧ =

"
0.439Re(c⇤32c33) + 0.145 |c⇤32c33|2 (✏

q
3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘#
(✏q3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘
,

�(R(⇤)⌫⌫
K )µµ ⇡ 2.54⇥ 10�2Re(c⇤32c33) (✏

q
3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘
.

(The expression for �(R(⇤)
K )µµ is approximate, because we have kept only the interference

term with the Standard Model, which is large compared to the term from purely NP

contributions.) The next biggest contribution comes from ⌫µ⌫⌧ and ⌫⌧⌫µ final states. In

these cases, there is no interference with the SM and the contribution is

�(R(⇤)⌫⌫
K )µ⌧ +�(R(⇤)⌫⌫

K )⌧µ = 8.38⇥ 10�3
�
|c⇤22c33|2 + |c⇤32c23|2

�
(✏q3)

4

✓
M

TeV

◆�4 ⇣ g⇢
4⇡

⌘2
.

(4.15)

As is clear from these equations, the most important contribution comes from the ⌫⌧⌫⌧
process. It is possible to pass the bound �(R(⇤)⌫⌫

K )⌧⌧ < 2.7 in a large fraction of the param-

eter space. Furthermore, large deviations in R⌫⌫
K and R⇤⌫⌫

K (⇠ 50% of the SM contribution)

represent an interesting prediction of our composite leptoquarks scenario, which will be
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�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.
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In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏
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relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.
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Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
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This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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we consider. Indeed, since the identity of the neutrino cannot be determined in these

experiments, large contributions from the processes involving tau neutrinos are expected

in our model. Thus our model predicts a much larger rate than that expected in models

where NP couples only to the second generation lepton doublet.

Current NP bounds from these decays can be found in [45], which are quoted in terms

of ratios to Standard Model predictions. With a slight alteration of the notation of [45],
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limits thereon, are
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(The expression for �(R(⇤)
K )µµ is approximate, because we have kept only the interference

term with the Standard Model, which is large compared to the term from purely NP

contributions.) The next biggest contribution comes from ⌫µ⌫⌧ and ⌫⌧⌫µ final states. In

these cases, there is no interference with the SM and the contribution is
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As is clear from these equations, the most important contribution comes from the ⌫⌧⌫⌧
process. It is possible to pass the bound �(R(⇤)⌫⌫

K )⌧⌧ < 2.7 in a large fraction of the param-

eter space. Furthermore, large deviations in R⌫⌫
K and R⇤⌫⌫

K (⇠ 50% of the SM contribution)

represent an interesting prediction of our composite leptoquarks scenario, which will be
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Predictions
• Rare Kaon decay

testable at the upcoming Belle II experiment [45, 46]. Our prediction can be compared

with the case in which the leptoquark has only muonic couplings, in which the contributions

to �(R(⇤)⌫⌫
K ) are . 5% (see section 4.5 of [45]).

4.2.2 K+ ! ⇡+⌫⌫

Given that measurements involving neutrinos have the ability to probe some of the largest

couplings in our model – those involving third generation leptons – it is necessary to check

other rare meson decays with final state neutrinos.

Following [47], (but rescaling the bound given there to match the slightly more recent

measurement in [42]), the measurement of B(K+ ! ⇡+⌫⌫) produces a bound (at 95%

confidence level) on the real NP coe�cient �C⌫⌫̄ (defined in [47]) of

�C⌫⌫̄ 2 [�6.3, 2.3]. (4.16)

The branching ratio is given in terms of �C⌫⌫̄ by

B(K+ ! ⇡+⌫⌫) = 8.6(9)⇥ 10�11[1 + 0.96�C⌫⌫̄ + 0.24(�C⌫⌫̄)
2]. (4.17)

Our leptoquark contributes to �C⌫⌫̄ as

�C⌫⌫̄ = 0.62 Re(c31c
⇤
32)
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via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.

However the NA62 experiment, due to begin data-taking in 2015, will measure B(K+ !
⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink

the bounds on �C⌫⌫̄ to

�C⌫⌫̄ 2 [�0.2, 0.2] (4.19)

at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive

to our leptoquark.

4.2.3 Meson mixing

The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.

This e↵ect will be largest in Bs mesons. From [35], the bound produced on the leptoquark

couplings when both leptons exchanged in the box are taus (the dominant contribution in

our scenario) is

|�33�
⇤
32|2 <

196⇡2M2�mNP
B0

s

f2
B0

s
mB0

s

. (4.20)

From [49], fB0
s
= 0.231 GeV, and

�mSM
B0

s
= (17.3± 2.6)⇥ 1012~s�1 = (1.14± 0.17)⇥ 10�8MeV, (4.21)

while from [42], the measured value of the mass splitting is

�mB0
s
= 17.69⇥ 1012~s�1 = 1.2⇥ 10�8MeV. (4.22)
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M ⇠ TeV, our scenario passes current bounds.
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⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink
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to our leptoquark.
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couplings when both leptons exchanged in the box are taus (the dominant contribution in

our scenario) is

|�33�
⇤
32|2 <

196⇡2M2�mNP
B0

s

f2
B0

s
mB0

s

. (4.20)

From [49], fB0
s
= 0.231 GeV, and

�mSM
B0

s
= (17.3± 2.6)⇥ 1012~s�1 = (1.14± 0.17)⇥ 10�8MeV, (4.21)

while from [42], the measured value of the mass splitting is

�mB0
s
= 17.69⇥ 1012~s�1 = 1.2⇥ 10�8MeV. (4.22)

– 15 –

 Present bound NA62 expected sensitivity

testable at the upcoming Belle II experiment [45, 46]. Our prediction can be compared

with the case in which the leptoquark has only muonic couplings, in which the contributions

to �(R(⇤)⌫⌫
K ) are . 5% (see section 4.5 of [45]).

4.2.2 K+ ! ⇡+⌫⌫

Given that measurements involving neutrinos have the ability to probe some of the largest

couplings in our model – those involving third generation leptons – it is necessary to check

other rare meson decays with final state neutrinos.

Following [47], (but rescaling the bound given there to match the slightly more recent

measurement in [42]), the measurement of B(K+ ! ⇡+⌫⌫) produces a bound (at 95%

confidence level) on the real NP coe�cient �C⌫⌫̄ (defined in [47]) of

�C⌫⌫̄ 2 [�6.3, 2.3]. (4.16)

The branching ratio is given in terms of �C⌫⌫̄ by

B(K+ ! ⇡+⌫⌫) = 8.6(9)⇥ 10�11[1 + 0.96�C⌫⌫̄ + 0.24(�C⌫⌫̄)
2]. (4.17)

Our leptoquark contributes to �C⌫⌫̄ as

�C⌫⌫̄ = 0.62 Re(c31c
⇤
32)

⇣ g⇢
4⇡

⌘
(✏q3)

2
✓

M

TeV

◆�2

, (4.18)

via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.

However the NA62 experiment, due to begin data-taking in 2015, will measure B(K+ !
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The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.
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to �(R(⇤)⌫⌫
K ) are . 5% (see section 4.5 of [45]).

4.2.2 K+ ! ⇡+⌫⌫
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couplings in our model – those involving third generation leptons – it is necessary to check

other rare meson decays with final state neutrinos.

Following [47], (but rescaling the bound given there to match the slightly more recent

measurement in [42]), the measurement of B(K+ ! ⇡+⌫⌫) produces a bound (at 95%

confidence level) on the real NP coe�cient �C⌫⌫̄ (defined in [47]) of
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via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.

However the NA62 experiment, due to begin data-taking in 2015, will measure B(K+ !
⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink

the bounds on �C⌫⌫̄ to
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at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive

to our leptoquark.

4.2.3 Meson mixing

The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.

This e↵ect will be largest in Bs mesons. From [35], the bound produced on the leptoquark

couplings when both leptons exchanged in the box are taus (the dominant contribution in
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Taking the uncertainty in the prediction to be roughly the size of the NP contribution,
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| < 0.15 (as in [14]), then
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In terms of the parameters of our model this becomes
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We are able to pass this bound taking O (1) values for c33 and c23 and taking the other

parameters at values necessary to fit the anomalies as discussed above. The leptoquark will

also contribute to mixing of other neutral mesons. However bounds from the measurement

of mixing observables are generally weaker than bounds from meson decays (see eg. [50]).

4.2.4 µ ! e� and other radiative processes

The leptoquark has only left handed couplings, meaning that we will not get chiral en-

hancements to the branching ratio of µ ! e�. Nevertheless, the bound on B(µ ! e�) is

tight enough to be relevant for the model. The largest contributions come from diagrams

with a loop containing either a top or a bottom quark, together with the leptoquark. The

most recent measurement was performed by the MEG collaboration [51], who found a

bound at 90% confidence level of B(µ+ ! e+�) < 5.7 ⇥ 10�13. Using the formula for the

rate given in [35], and neglecting all but the processes involving 3rd generation quarks in

the loop,

|�⇤
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which amounts to a bound on c⇤23c13 of

|c⇤23c13| < 1.4
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This turns out to be a strong constraint for our model. Given that our EFT paradigm

assumes cij ⇠ O(1), the bound is, roughly, saturated.

Given our flavour structure we expect an even larger contribution to ⌧ ! µ� than to

µ ! e�. However the current bound on the branching ratio of this process is B(⌧ ! µ�) <

4.4⇥ 10�8 [42], which is several orders of magnitude larger than the model prediction.

The process b ! s� can be generated via similar diagrams. Current bounds on this

process, which leave room for NP contributions up to about 30% of the SM prediction,

lead to a bound on the combination |c⇤33c32| of roughly |c⇤33c32| . 100
⇣
4⇡
g⇢

⌘ �
M
TeV

�2 ⇣ 1
✏q3

⌘2
.

4.2.5 Comments on other constraints and predictions

Despite the fact that contributions from leptoquark diagrams will be largest for processes

containing taus (or tau neutrinos) in the final state, we have not yet mentioned any bounds

from meson decays with ⌧ leptons in the final state. This is because existing bounds are
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via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.
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at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive
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⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink

the bounds on �C⌫⌫̄ to

�C⌫⌫̄ 2 [�0.2, 0.2] (4.19)

at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive

to our leptoquark.

4.2.3 Meson mixing

The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.

This e↵ect will be largest in Bs mesons. From [35], the bound produced on the leptoquark

couplings when both leptons exchanged in the box are taus (the dominant contribution in

our scenario) is

|�33�
⇤
32|2 <

196⇡2M2�mNP
B0

s

f2
B0

s
mB0

s

. (4.20)

From [49], fB0
s
= 0.231 GeV, and

�mSM
B0

s
= (17.3± 2.6)⇥ 1012~s�1 = (1.14± 0.17)⇥ 10�8MeV, (4.21)

while from [42], the measured value of the mass splitting is

�mB0
s
= 17.69⇥ 1012~s�1 = 1.2⇥ 10�8MeV. (4.22)
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Composite leptoquark prediction

• Meson mixing

Taking the uncertainty in the prediction to be roughly the size of the NP contribution,

|�mNP
B0

s
/�mSM

B0
s
| < 0.15 (as in [14]), then

|�33�
⇤
32|2 < 0.017

✓
M

TeV

◆2

. (4.23)

In terms of the parameters of our model this becomes

|c33c⇤23| < 4.2

✓
4⇡

g⇢

◆2✓ M

TeV

◆2✓ 1

✏q3

◆4

. (4.24)

We are able to pass this bound taking O (1) values for c33 and c23 and taking the other

parameters at values necessary to fit the anomalies as discussed above. The leptoquark will

also contribute to mixing of other neutral mesons. However bounds from the measurement

of mixing observables are generally weaker than bounds from meson decays (see eg. [50]).

4.2.4 µ ! e� and other radiative processes

The leptoquark has only left handed couplings, meaning that we will not get chiral en-

hancements to the branching ratio of µ ! e�. Nevertheless, the bound on B(µ ! e�) is

tight enough to be relevant for the model. The largest contributions come from diagrams

with a loop containing either a top or a bottom quark, together with the leptoquark. The

most recent measurement was performed by the MEG collaboration [51], who found a

bound at 90% confidence level of B(µ+ ! e+�) < 5.7 ⇥ 10�13. Using the formula for the

rate given in [35], and neglecting all but the processes involving 3rd generation quarks in

the loop,

|�⇤
23�13| < 7.3⇥ 10�4

✓
M

TeV

◆2

, (4.25)

which amounts to a bound on c⇤23c13 of

|c⇤23c13| < 1.4

✓
4⇡

g⇢

◆✓
M

TeV

◆2✓ 1

✏q3

◆2

. (4.26)

This turns out to be a strong constraint for our model. Given that our EFT paradigm

assumes cij ⇠ O(1), the bound is, roughly, saturated.

Given our flavour structure we expect an even larger contribution to ⌧ ! µ� than to

µ ! e�. However the current bound on the branching ratio of this process is B(⌧ ! µ�) <

4.4⇥ 10�8 [42], which is several orders of magnitude larger than the model prediction.

The process b ! s� can be generated via similar diagrams. Current bounds on this

process, which leave room for NP contributions up to about 30% of the SM prediction,

lead to a bound on the combination |c⇤33c32| of roughly |c⇤33c32| . 100
⇣
4⇡
g⇢

⌘ �
M
TeV

�2 ⇣ 1
✏q3

⌘2
.

4.2.5 Comments on other constraints and predictions

Despite the fact that contributions from leptoquark diagrams will be largest for processes

containing taus (or tau neutrinos) in the final state, we have not yet mentioned any bounds

from meson decays with ⌧ leptons in the final state. This is because existing bounds are
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• Radiative decay µ! e�
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4.2.4 µ ! e� and other radiative processes

The leptoquark has only left handed couplings, meaning that we will not get chiral en-

hancements to the branching ratio of µ ! e�. Nevertheless, the bound on B(µ ! e�) is
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most recent measurement was performed by the MEG collaboration [51], who found a
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This turns out to be a strong constraint for our model. Given that our EFT paradigm

assumes cij ⇠ O(1), the bound is, roughly, saturated.

Given our flavour structure we expect an even larger contribution to ⌧ ! µ� than to

µ ! e�. However the current bound on the branching ratio of this process is B(⌧ ! µ�) <

4.4⇥ 10�8 [42], which is several orders of magnitude larger than the model prediction.

The process b ! s� can be generated via similar diagrams. Current bounds on this

process, which leave room for NP contributions up to about 30% of the SM prediction,

lead to a bound on the combination |c⇤33c32| of roughly |c⇤33c32| . 100
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4.2.5 Comments on other constraints and predictions

Despite the fact that contributions from leptoquark diagrams will be largest for processes

containing taus (or tau neutrinos) in the final state, we have not yet mentioned any bounds

from meson decays with ⌧ leptons in the final state. This is because existing bounds are
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Constraints

Decay (ij)(kl)⇤ |�ij�⇤
kl|/

�
M
TeV

�2 |cijc⇤kl|
� g⇢
4⇡

�
(✏q3)

2 /
�

M
TeV

�2

KS ! e+e� (12)(11)⇤ < 1.0 < 4.9⇥ 107

KL ! e+e� (12)(11)⇤ < 2.7⇥ 10�3 < 1.3⇥ 105

† KS ! µ+µ� (22)(21)⇤ < 5.1⇥ 10�3 < 1.2⇥ 103

KL ! µ+µ� (22)(21)⇤ < 3.6⇥ 10�5 < 8.3

K+ ! ⇡+e+e� (11)(12)⇤ < 6.7⇥ 10�4 < 3.3⇥ 104

KL ! ⇡0e+e� (11)(12)⇤ < 1.6⇥ 10�4 < 7.8⇥ 103

K+ ! ⇡+µ+µ� (21)(22)⇤ < 5.3⇥ 10�3 < 1.2⇥ 103

KL ! ⇡0⌫⌫̄ (31)(32)⇤ < 3.2⇥ 10�3 < 42.5

† Bd ! µ+µ� (21)(23)⇤ < 3.9⇥ 10�3 < 46.0

Bd ! ⌧+⌧� (31)(33)⇤ < 0.67 < 4.6⇥ 102

† B+ ! ⇡+e+e� (11)(13)⇤ < 2.8⇥ 10�4 < 6.9⇥ 102

† B+ ! ⇡+µ+µ� (21)(23)⇤ < 2.3⇥ 10�4 < 2.7

Figure 4. 90% confidence level bounds [50] on leptoquark couplings from branching ratios of
(semi-)leptonic meson decays involving b ! d and s ! d, rescaled to M = 1 TeV. A dagger denotes
bounds that have been rescaled to newer measurements [42]. The final column gives bounds on
partial compositeness parameters in units of the nominal values in (3.10).

4.3 Direct searches at the LHC

If the leptoquark is light enough, as the arguments in § 4.1 suggest it should be, it will be

pair-produced at the LHC with sizable cross-section via QCD interactions. The leptoquark

field comprises 3 charge eigenstates, ⇧4/3, ⇧1/3 and ⇧�2/3, with charges 4/3, 1/3 and �2/3

respectively. Since we expect them to be rather heavier than the top, their branching ratio

to third generation quarks and leptons is around 94% or greater. So they predominantly

decay as follows:

⇧4/3 ! ⌧ b,

⇧1/3 ! ⌧ t or ⇧1/3 ! ⌫⌧ b,

⇧�2/3 ! ⌫⌧ t.

There will be electroweak mass splittings between the three leptoquark states, allowing the

heavier ones to decay to the lighter ones, but these decays will be subdominant to those

through the leptoquark couplings, if the mass splittings are small. Of the LHC leptoquark

searches, dedicated searches for third generation leptoquarks will put the strongest limits

on our leptoquarks [58]. The ⇧�2/3 leptoquark will decay to tops and missing energy, so

stop searches, which look for the same signature, will apply. Likewise sbottom searches

will apply to ⇧1/3. A recent CMS search [59] ruled out leptoquarks decaying wholly to

⌧ and b up to a mass of 740 GeV. This bound roughly applies to the leptoquark ⇧4/3.

This leptoquark’s branching ratio to ⌧ and b is 0.94 (over the mass range of the search,

the variation is only in higher decimal places), so the bound on it from [59] is roughly 720

GeV. Another CMS search [60] rules out leptoquarks decaying wholly to top and tau to

masses of 634 GeV. This search results in a bound of 410 GeV on the mass of the ⇧1/3
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• A breaking of the lepton universality is generally associated to a breaking of the lepton 
flavour. [See Glashow, Guadagnoli, Lane arXiv:1411.0565]

• In our framework, all the LFV decays are below the current experimental sensitivity 

Model independent constraints 	

Davidson, Bailey, Campbell hep-ph/9309310

M = 1 TeV



LHC
• Production via strong 
interaction

• Decay to fermions of the third family
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Figure 4. 90% confidence level bounds [50] on leptoquark couplings from branching ratios of
(semi-)leptonic meson decays involving b ! d and s ! d, rescaled to M = 1 TeV. A dagger denotes
bounds that have been rescaled to newer measurements [42]. The final column gives bounds on
partial compositeness parameters in units of the nominal values in (3.10).

4.3 Direct searches at the LHC

If the leptoquark is light enough, as the arguments in § 4.1 suggest it should be, it will be

pair-produced at the LHC with sizable cross-section via QCD interactions. The leptoquark

field comprises 3 charge eigenstates, ⇧4/3, ⇧1/3 and ⇧�2/3, with charges 4/3, 1/3 and �2/3

respectively. Since we expect them to be rather heavier than the top, their branching ratio

to third generation quarks and leptons is around 94% or greater. So they predominantly

decay as follows:

⇧4/3 ! ⌧ b,

⇧1/3 ! ⌧ t or ⇧1/3 ! ⌫⌧ b,

⇧�2/3 ! ⌫⌧ t.

There will be electroweak mass splittings between the three leptoquark states, allowing the

heavier ones to decay to the lighter ones, but these decays will be subdominant to those

through the leptoquark couplings, if the mass splittings are small. Of the LHC leptoquark

searches, dedicated searches for third generation leptoquarks will put the strongest limits

on our leptoquarks [58]. The ⇧�2/3 leptoquark will decay to tops and missing energy, so

stop searches, which look for the same signature, will apply. Likewise sbottom searches

will apply to ⇧1/3. A recent CMS search [59] ruled out leptoquarks decaying wholly to

⌧ and b up to a mass of 740 GeV. This bound roughly applies to the leptoquark ⇧4/3.

This leptoquark’s branching ratio to ⌧ and b is 0.94 (over the mass range of the search,

the variation is only in higher decimal places), so the bound on it from [59] is roughly 720

GeV. Another CMS search [60] rules out leptoquarks decaying wholly to top and tau to

masses of 634 GeV. This search results in a bound of 410 GeV on the mass of the ⇧1/3
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M > 720 GeV
M > 410 GeV
M > 640 GeV

M > 720 GeV

• Stop and sbottom + 
dedicated leptoquark searches

[ATLAS arXiv:1407.0583]	

[CMS arXiv:1408.0806]	

[CMS-PAS-EXO-13-010]



Naturalness
• From the B-meson decays anomalies we get M ⇠ 1 TeV, g⇢ ⇠ 4⇡

• We can infer the scale of the strong sector from M ⇠ ↵s

4⇡
m2

⇢ m⇢ ⇠ 10 TeV

• Flavour physics is (almost) fine in the quark sector, but we need a departure from flavour 
anarchy in the lepton sector See Rattazzi, etal. arXiv:1205.5803

• Higgs potential

of the new strong flavorful dynamics, thus suggesting a non-trivial link between the flavor puzzle
and the weak scale. In this respect notice that, in the absence of new dynamical assumptions, the
Higgs potential in composite Higgs models is dominantly determined by the top-quark couplings
and approximately reads:

V (H) ⇠ 3

4⇡2

(✏q,u
3

)2m4

⇢ V

✓
g⇢H

m⇢

◆
. (3.13)

The natural vacuum therefore sits at v ⇠ m⇢/g⇢, so that to obtain a phenomenologically viable
model one needs at least a fine-tuning of order:

g2⇢v
2

m2

⇢

⇡ 5%

✓
10 TeV

⇤

◆
2

. (3.14)

In general, however, a stronger tuning is required to obtain a light physical Higgs. After the
electroweak vacuum has been set to its phenomenological value, from (3.13) we find that a tuning
between the percent and the permille level is needed to accommodate mh ⇠ 125 GeV. If this is
really how nature works, then ATLAS and CMS will not be able to directly probe the confinement
scale ⇠ m⇢, and the most striking, generic signatures of Partial Compositeness would be visible
only in indirect, precision measurements.

This conclusion would change if the typical mass m of the fermionic resonances of the new
sector is somewhat smaller than m⇢, in which case the fine-tuning problem can be ameliorated, as
recently discussed in [42]-[44].

Let us briefly see how power counting should be modified under this assumption. Formally, the
fermion resonances  can be made parametrically lighter than the dynamical scale by imposing
an approximate chiral symmetry. As a consequence, all operators in (2.2) that violate such a
symmetry should be accompanied by appropriate powers of the small parameter

g 
g⇢

⌘ m 

m⇢

⌧ 1. (3.15)

Terms that violate the chiral symmetry include the mass mixing with the SM fermions, now
controlled by the operators ✏̃aim  

a

i f
a
i P (g⇢H/m⇢), and the coupling of the  ’s to the Higgs doublet,

which are now proportional to g rather than to g⇢. As a result one finds that the Yukawa matrix
scales as ⇠ g ✏̃ai ✏̃

b
j, and similarly that the Higgs boson mass is reduced by some power of g /g⇢

compared to the generic case.
However, no suppression is expected for non-chiral couplings among the  ’s and the other

heavy resonances, which are still set by g⇢. This implies that chirally-invariant flavor-violating
operators will become parametrically more relevant than in the generic g ⇠ g⇢ case. Keeping the
Yukawa matrix as well as ⇤ fixed, we consistently find that the couplings of the operators in (3.3)
are unchanged, but those in (3.4) and (3.5) are parametrically enhanced by a factor g⇢/g and
(g⇢/g )2, respectively. We find this unsatisfactory for our purpose, and therefore do not discuss
this regime any further.
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• In general, a larger tuning is required to obtain a light physical Higgs

v ⇠ f =
m⇢

g⇢
⇠ 1 TeVnatural value

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and gauge

couplings explicitly appear in covariant derivatives. Also, we recall the definition H†←→D µH ≡
H†DµH − (DµH†)H .

In what follows, we will comment on the operators in eq. (15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα + (H†H)Hα/f 2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we will

show in sect. 4, plays a crucial role in testing the SILH in Higgs and vector boson scattering

at high-energy colliders. The operator proportional to cT violates custodial symmetry and

gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (16)

ξ ≡
v2

f 2
, v =

(√
2GF

)−1/2
= 246 GeV. (17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-universal

effects will appear at order y2
f/g

2
ρ. This is because this term purely originates from the

non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned above

precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level exchange

of a massive triplet and singlet vector field as explained in the previous section (see also

eq. (117) in appendix A). Their relative importance in 2-to-2 scattering amplitudes with

respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH). Therefore, in weakly-coupled

10

= few%EW tuning



Conclusions

• Current anomalies in B decays can be explained in the context of a composite 
Higgs model featuring an additional (light) leptoquark as pseudo-Goldstone boson.

• Considering the present sensitivity and the future prospects, indirect effects could 
show up in various observables:  

• Composite leptoquarks could be within the reach of LHC13

• The scale of the composite sector is expected to be at                          , tuning is  
below the per cent level

m⇢ ⇠ 10 TeV

BR(B ! K(⇤)⌫⌫), BR(K+ ! ⇡+⌫⌫), BR(µ! e�), �MBs
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Quark sector
Operator �F = 2 Re(c)� (4⌅/g⇧)2 Im(c)� (4⌅/g⇧)2 Observables

(s̄L�µdL)2 6� 102
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mK ; ⇥K [44][45]

(s̄RdL)2 500 2 ”
(s̄R dL)(s̄LdR) 2� 102 0.6 ”

(c̄L�µuL)2 4� 102
⇤

�u3
�q3

⌅2

70
⇤

�u3
�q3

⌅2

�mD; |q/p|,⌃D [44][45]

(c̄L uR)2 30 6 ”
(c̄R uL)(c̄LuR) 3� 102 50 ”

(b̄L�µdL)2 5
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mBd
; S⌃KS [44][45]

(b̄R dL)2 80 30 ”
(b̄R dL)(b̄LdR) 3� 102 80 ”

(b̄L�µsL)2 6
⇤

�u3
�q3

⌅2

�mBs [44][45]

(b̄R sL)2 1� 102 ”
(b̄R sL)(b̄LsR) 3� 102 ”

Operator �F = 1 Re(c) Im(c) Observables

sR⇧µ⇤eFµ⇤bL 1 B ⇤ Xs [46]
sL⇧µ⇤eFµ⇤bR 2 9 ”
sR⇧µ⇤gsGµ⇤dL - 0.4 K ⇤ 2⌅; ⇥⇥/⇥ [47]
sL⇧µ⇤gsGµ⇤dR - 0.4 ”

s̄L�µbL H†i
⇥⇤
D µH 30

� g�
4⌅

⇥2
(⇥u3)

2 Bs ⇤ µ+µ� [48]

s̄L�µbL H†i
⇥⇤
D µH 6

� g�
4⌅

⇥2
(⇥u3)

2 10
� g�
4⌅

⇥2
(⇥u3)

2 B ⇤ Xs +� [46]

Operator �F = 0 Re(c) Im(c) Observables

d⇧µ⇤eFµ⇤dL,R - 3� 10�2 neutron EDM [49][50]
u⇧µ⇤eFµ⇤uL,R - 0.3 ”
d⇧µ⇤gsGµ⇤dL,R - 4� 10�2 ”
u⇧µ⇤gsGµ⇤uL,R - 0.2 ”

b̄L�µbL H†i
⇥⇤
D µH 5

� g�
4⌅

⇥2
(⇥u3)

2 Z ⇤ bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

e⇧µ⇤eFµ⇤eL,R - 5� 10�2 electron EDM [52]
µ⇧µ⇤eFµ⇤eL,R 4� 10�3 µ ⇤ e� [53]

ē�µµL,R H†i
⇥⇤
D µH 1.5

� g�
4⌅

⇥ �e3
�⇤3

µ(Au) ⇤ e(Au) [54]

Table 1: Upper bounds on the dimensionless coe⇥cients of the operators in the notation (3.3)–(3.5),
with � = 4�m�/g� = 10 TeV. The bound is on the coe⇥cients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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m⇢ = 10 TeV g⇢ = 4⇡

• Not excluded, given the 
uncertainties 

• Close to the current 
sensitivity



Lepton sector

Operator �F = 2 Re(c)� (4⌅/g⇧)2 Im(c)� (4⌅/g⇧)2 Observables

(s̄L�µdL)2 6� 102
⇤

�u3
�q3
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2
⇤

�u3
�q3

⌅2

�mK ; ⇥K [44][45]

(s̄RdL)2 500 2 ”
(s̄R dL)(s̄LdR) 2� 102 0.6 ”

(c̄L�µuL)2 4� 102
⇤

�u3
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⇤
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2
⇤
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�q3
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⇤
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⌅2

�mBs [44][45]
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(b̄R sL)(b̄LsR) 3� 102 ”

Operator �F = 1 Re(c) Im(c) Observables
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sL⇧µ⇤eFµ⇤bR 2 9 ”
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⇥⇤
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⇥2
(⇥u3)
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s̄L�µbL H†i
⇥⇤
D µH 6

� g�
4⌅

⇥2
(⇥u3)
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� g�
4⌅

⇥2
(⇥u3)

2 B ⇤ Xs +� [46]

Operator �F = 0 Re(c) Im(c) Observables

d⇧µ⇤eFµ⇤dL,R - 3� 10�2 neutron EDM [49][50]
u⇧µ⇤eFµ⇤uL,R - 0.3 ”
d⇧µ⇤gsGµ⇤dL,R - 4� 10�2 ”
u⇧µ⇤gsGµ⇤uL,R - 0.2 ”

b̄L�µbL H†i
⇥⇤
D µH 5

� g�
4⌅

⇥2
(⇥u3)

2 Z ⇤ bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

e⇧µ⇤eFµ⇤eL,R - 5� 10�2 electron EDM [52]
µ⇧µ⇤eFµ⇤eL,R 4� 10�3 µ ⇤ e� [53]

ē�µµL,R H†i
⇥⇤
D µH 1.5

� g�
4⌅

⇥ �e3
�⇤3

µ(Au) ⇤ e(Au) [54]

Table 1: Upper bounds on the dimensionless coe⇥cients of the operators in the notation (3.3)–(3.5),
with � = 4�m�/g� = 10 TeV. The bound is on the coe⇥cients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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New Physics (Model Independent)
• Model independent analysis via a low-energy effective Hamiltonian

with magnitude fixed by the degrees of compositeness of each of the SM fermion multiplets,

giving 15 mixing parameters. In the quark sector, all but one of these parameters is fixed by

measurements of quark masses and the CKM matrix; there is more ambiguity in the lepton

sector, but we find that everything can be fixed by assuming that the mixings of the left and

right-handed lepton multiplets are comparable. This assumption is a plausible one, from the

point of view of the UV flavour dynamics, and has the additional benefit that new physics

(NP) corrections to the most severely constrained flavour-violating observable, µ ! e�, are

minimized. As a result, we are left with just 3 free parameters in the model: the mass, M , of

the leptoquark, the coupling strength, g⇢, of the strong sector resonances, and the degree

of compositeness, ✏q3, of the third generation quark doublet. Furthermore, all processes

to which the leptoquark contributes result in constraints on the single combination x ⌘
p
g⇢✏

q
3/M . Thus the model is extremely predictive. We find that the preferred range of

x corresponds to plausible values of the 3 underlying parameters of the strongly coupled

theory (in which the weak scale is slightly tuned), namely g⇢ ⇠ 4⇡, M ⇠ TeV, and ✏q3 ⇠ 1.

Thus, g⇢ and ✏q3 lie close to their maximal values, meaning that one cannot evade future

direct searches at the LHC by scaling up M and g⇢.

As for the existing bounds, we find that there is no obvious conflict, but that there is

potential to see e↵ects in µ ! e�, K+ ! ⇡+⌫⌫, and B+ ! ⇡+µ+µ�, in the near future.

Moreover, the required mass range for the leptoquark is not far above that already excluded

by LHC8, and so there is plenty of scope for discovery in direct production at LHC13.

The outline is as follows. In the next Section, we describe the data anomalies and

review fits thereto using higher-dimensional SM operators. We also show that they can be

described by a leptoquark carrying the representation (3,3, 13) of the SU(3)⇥SU(2)⇥U(1)

gauge group. In §3 we review the partial compositeness and strong dynamics paradigms.

We show how the leptoquark can accompany the Higgs as a PGB of strong dynamics and

exhibit symmetries that prevent proton decay, &c. In §4, we discuss important constraints

on the model and describe the prospects for direct searches for the leptoquark at LHC13

and indirect searches using flavour physics.

2 Status of b ! s`` fits and leptoquark quantum numbers

The anomalies that we wish to explain were observed at LHCb in semileptonic B meson

decays involving a b ! s quark transition. These may be described via the low-energy,

e↵ective hamiltonian

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (2.1)

where O`
i are a basis of SU(3)C ⇥ U(1)Q-invariant dimension-six operators giving rise to

the flavour-changing transition. The superscript ` denotes the lepton flavour in the final

– 3 –

state (` 2 {e, µ, ⌧}), and the operators O`
i are given in a standard basis by

O(0)
7 =

e

16⇡2
mb

�
s̄�↵�PR(L)b

�
F↵� ,

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (2.2)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

We neglect possible (pseudo-)scalar and tensor operators, since these have been shown [14,

15] to be constrained to be too small (in the absence of fine-tuning in the electron sector)

to explain LHCb anomalies. In the SM, the operator coe�cients are lepton universal and

the operators that have non-negligible coe�cients are O7, O`
9, and O`

10, with

CSM
7 = �0.319,

CSM
9 = 4.23, (2.3)

CSM
10 = �4.41.

at the scale mb [16].

The first tension with the SM was observed last year in angular observables in the

semileptonic decay B ! K⇤µ+µ� [4, 5]. The rôle of theoretical hadronic uncertainties in

the discrepancy is not yet clear, and there is ongoing debate as to whether the e↵ects of

unknown power corrections or long-distance charm loop contributions can explain these

anomalies without the need for new, short-distance physics [17–20]. Nevertheless, several

model-independent analyses [17, 21–24] have been performed on the B ! K⇤µ+µ� decay

data, as well as on other, relevant, semileptonic and leptonic processes, allowing for the

possibility of new physics contributions to the e↵ective operators in eq. (2.2). There seems

to be a consensus that, if only a single Wilson coe�cient is allowed to be non-vanishing,

then NP contributions to the e↵ective operator Oµ
9 are preferred, with the NP coe�cient

CNP
9 of this operator being negative. A number of models of NP were proposed to explain

this e↵ect [25–30].

Earlier this year LHCb measured another discrepancy in B decays. To wit, it was

found that a certain ratio, RK , of branching ratios of B ! Kµ+µ� to B ! Ke+e� lay

2.6� below the SM prediction [6]. Specifically, the observable is defined as

RK =

R 6
1 dq2 d�(B

+!K+µ+µ�)
dq2R 6

1 dq2 d�(B
+!K+e+e�)

dq2

, (2.4)

where q2 is the invariant mass of the di-lepton pair and the integral is performed over

the interval q2 2 [1, 6] GeV2. Like the B ! K⇤µ+µ� decay, these processes proceed via

a b ! s`` transition. The observable RK has the advantage of being theoretically well-

understood, predicted to be almost exactly 1 in the SM [31] (specifically, 1.0003 ± 0.0001

when mass e↵ects are taken into account [32]). A discrepancy in RK cannot be explained by

lepton-flavour-universal NP, nor by any of the sources of theoretical uncertainty that might

underlie the B ! K⇤µ+µ� anomalies. Analyses and fits including the RK data and other

recent measurements were performed in [14, 20, 33, 34]. Due to the lepton non-universality
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SM gives lepton 
flavour universal 

contribution

• Data suggest New Physics in the muon sector only.

• Short distance effects from NP are expected to have a chiral structure

`�↵`
`�↵�5`

`L�↵`L

`R�↵`R

Best Fit with	

Left-Left currents	


Cµ,NP
9 = �Cµ,NP

10

• Look for the current (bL�↵sL)(µL�↵µL)

[Various groups]



Flavour violation at the tree level

• “Vertical” correlations induced by SM gauge invariance  

• “Horizontal” correlations induced by partial compositeness

⇧

the lepton doublet, `i =
�
⌫i, eiL

�T
. We assume that the mass di↵erences between the

components of the leptoquark triplet are small compared to the masses themselves, so that

the components can be assumed to have a common mass, M . Therefore we may write

Leff
LQ =

X

ij`k

�ij(�`k)⇤

2M2

h
2
�
dL�µdL

�
kj
(eL�µeL)`i + 2 (u0L�

µu0L)kj (⌫L�µ⌫L)`i

+
�
dL�µdL

�
kj
(⌫L�µ⌫L)`i + (u0L�

µu0L)kj (eL�µeL)`i (4.2)

+ (u0L�
µdL)kj (eL�µ⌫L)`i +

�
dL�µu0L

�
kj
(⌫L�µeL)`i

i
,

where u0jL = V †jk
CKMukL. All unprimed fields are mass eigenstates.10

We now comment briefly on the qualitative consequences of the various operators that

appear above.

(i) Flavour changing neutral currents (FCNC) in the down quark sector

These are generated by the operators
�
dL�µdL

�
kj
(eL�µeL)`i and

�
dL�µdL

�
kj
(⌫L�µ⌫L)`i.

They can mediate meson decays via the transitions b ! s``, b ! s⌫⌫, s ! d``,

s ! d⌫⌫, b ! d`` and b ! d⌫⌫.

The b ! s`` transition is the main motivation for this work and will be discussed in

more detail below. The decays involving neutrinos can have large NP contributions,

because couplings to tau neutrinos are large in the partial compositeness framework

considered here. We provide a quantitative analysis of the decays B ! K(⇤)⌫⌫ and

K ! ⇡⌫⌫ below. Constraints on leptoquark couplings from measurements of (lepton-

flavour-conserving) K and B decays are summarized in Fig. 4 below, excluding b !
s`` and b ! s⌫⌫ processes, which will be discussed in more detail in the text. Lepton-

flavour-violating (LFV) processes, recently investigated in [44], are also possible in

our set-up, but current bounds on these are weak. We will comment more on LFV

processes in § 4.2.5.

(ii) FCNC in the up quark sector

These are generated by the operators (u0L�
µu0L)kj (⌫L�µ⌫L)`i and (u0L�

µu0L)kj (eL�µeL)`i.

They can mediate decays of charmed mesons via c ! u`` and c ! u⌫⌫ transitions.

Bounds on these processes are weak, and we know of no bounds for decays with ⌧

leptons or neutrinos in the final state, which would receive the largest NP contribu-

tions. These operators can also generate top decays into u or c quarks plus a pair of

charged leptons or of neutrinos. The rates of these decays will be very small relative

to current limits on FCNC top quark decays [42] (which in any case search specifically

for t ! Zq, meaning they cannot be directly applied to leptoquarks). Since current

measurements of FCNC in the up sector do not provide strong constraints on our

model, we will not discuss them further.

10We neglect neutrino masses.
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