Non-perturbative effects in $\left.\boldsymbol{B}^{->\boldsymbol{X}} \mathbf{(}^{*}\right)$ ll (charm resonances)

Lyon and RZ 1406.0566v1(v2 to appear)

Roman Zwicky
Edinburgh University
work triggered by LHCb measurement - PRL 111 (2013)

- very pronounced resonance spectrum through b->s(cc->ll)
- is it all QCD ? .. new bscc-physics is contrived and constrained(?)
- what are the implications for prediction is it related to 3.7σ tension SM:

structure

0) general overview
1) assessment: (naive) factorisation — fails non-factorisable corrections
2) tension with QCD? (semi-global quark hadron duality)
3) possible consequences at low \boldsymbol{q}^{2}

- (yet) unknown J Ψ-phases affect $B \rightarrow K I I \& P_{5}{ }^{\prime}$

4) implications at high $\boldsymbol{q}^{\mathbf{2}}$ (broad charm region) ideas to improve (skip as dinner approaching)

Phenomenology of $\mathbf{B} \rightarrow \mathbf{K}^{(*)}$)II

c.f. Matias' talk

$$
\begin{aligned}
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi} & =\left(J_{1 s}+J_{2 s} \cos 2 \theta_{\ell}+J_{6 s} \cos \theta_{\ell}\right) \sin ^{2} \theta_{K} \\
& +\left(J_{1 c}+J_{2 c} \cos 2 \theta_{\ell}+J_{6 c} \cos \theta_{\ell}\right) \cos ^{2} \theta_{K} \\
& +\left(J_{3} \cos 2 \phi+J_{9} \sin 2 \phi\right) \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \\
& +\left(J_{4} \cos \phi+J_{8} \sin \phi\right) \sin 2 \theta_{K} \sin 2 \theta_{\ell} \\
& +\left(J_{5} \cos \phi+J_{7} \sin \phi\right) \sin 2 \theta_{K} \sin \theta_{\ell}
\end{aligned}
$$

$J_{i} \propto H_{a} H_{b}^{*} \times$ kinematics

$B \rightarrow K^{(*)}$ II under microscope

- main actors of this talk (same quantum numbers!)

electroweak penguin (also O_{7}..)

4-quark operators (also $\mathrm{O}_{3 . .6}$)

K fast: light-cone methods LCSR, QCDF/SCET

1) assessment of (charm) resonances

- vac. pol. $\mathbf{h (q ^ { 2 })}$ (for $\left.\mathrm{B}->\mathrm{KIII}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow}$ hadrons as for ($\mathrm{g}-2$)

Disc ~ Im[h]; BESII-data'PLB08

Re[h] dispersion relation

our $\chi^{2 / d o f}=1.015$

Factorisation (BESII-data) applied to $\mathrm{B} \rightarrow \mathrm{KII}$ at high \mathbf{q}^{2}

clear failure of factorisation
clarifying status of factorisation of importance since:

- factorisation used estimate of "duality violations"
- perturbative factorisation used in most high-q² OPE predictions

B. probing non-factorisable effects

- think resonances described Breit-Wigner
N.B. 1) location of pole \& 2) residue are physical!

$$
\left.\mathcal{A}(B \rightarrow K \ell \ell)\right|_{q^{2} \simeq m_{\Psi}^{2}}=\frac{\mathcal{A}(B \rightarrow \Psi K) \mathcal{A}^{*}(\Psi \rightarrow \ell \ell)}{q^{2}-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}}+. .
$$

- idea: correct for $\boldsymbol{\Psi}$-production (residue physical)

$$
\begin{aligned}
\left.\mathcal{A}(B \rightarrow \Psi K)\right|_{\text {fac }} & \sim f_{+}^{B \rightarrow K}\left(q^{2}\right) \mathcal{A}(\Psi \rightarrow \ell \ell) \\
& \rightarrow f_{+}^{B \rightarrow K}(q^{2} \underbrace{\eta_{\Psi}}_{1+\text { non-fac }} \mathcal{A}(\Psi \rightarrow \ell \ell) \sim \mathcal{A}(B \rightarrow \Psi K)
\end{aligned}
$$

- fits η_{ψ} : b) global (scaled)fac; c) real-variable; d) complex-variable
results ．．．．

Fit	$\eta_{\mathcal{B}} \quad \eta_{c}$	$\eta_{\Psi(2 S)}$	$\eta_{\Psi(3770)}$	$\eta_{\Psi(4040)}$	$\eta_{\Psi(4160)}$	$\eta_{\Psi(4415)}$	$\chi^{2} / \text { d.o.f. }$	d．o．f．	pts	p－value
a）	$1.02 \equiv 1$	三1	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	3.59	99	117	$\simeq 10^{-30}$
b）	1．02－2．55	三1	$\equiv 1$	三1	三1	$\equiv 1$	1.334	98	117	1．5\％
c）	$0.77 \equiv 1$	－1．3	－7．2	－1．9	－4．6	－3．0	1.169	94	117	12\％
d）	$1.00 \equiv 1$	$\begin{aligned} & 3.8-5.1 i \\ & 6.4 e^{-i 53.3^{\circ}} \end{aligned}$	$\begin{aligned} & -0.1-2.3 i \\ & 2.0 e^{-i 92^{\circ}} \end{aligned}$	$\begin{aligned} & -0.5-1.2 i \\ & 1.3 e^{-i 111^{\circ}} \end{aligned}$	$\begin{aligned} & -3.0-3.1 i \\ & 4.3 e^{-i 135^{\circ}} \end{aligned}$	$\begin{gathered} -4.5+2.3 i \\ 5.1 e^{i 153^{\circ}} \end{gathered}$	1.124	89	117	20\％

2) assessment from theory viewpoint

is it or isn't it all that surprising?
a) patrons
b) hadrons
c) linked dispersion integrals
quark hadron duality

a] how large are partonic non-fac. corrections

- from pQCD alone not chance to resolve locally in q^{2}
- at high $q^{2}: q^{2}$ is a large scale can integrate out charm quarks so-called high-q2 "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

factorisation (BESII)
Lyon RZ'14

dim-3 vertex-corrections
Hurth, Isidori, Ghinculov, Yao’03
Greub, Pilipp, Schupach'08
100% in our units
small O(2\%) QCDF consistent dim. suppression
N.B. large due to colorenhancement
(not repeated higher orders)
- -50\%-correction is nowhere near -350\%

b) factorisation as a function of m_{ψ}

- experimental information on $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K}{ }^{(*)}$ and $\left.\mathrm{B} \rightarrow \Psi(2 \mathrm{~S}) \mathrm{K}^{*}\right)$
\Rightarrow quantify correction to factorisation: $\eta_{\psi}=1+$ non-fac ${ }^{1}$

$$
\xrightarrow[J / \Psi]{\Psi(2 S) \quad \Psi(3370) . . \Psi(4415)} \quad m_{\Psi} / \mathrm{GeV}
$$

1. whereas corrections to $\mathrm{J} / \Psi, \Psi(2 \mathrm{~S})$ could be $40 \%, 80 \%$ "only" (order of vertex corrections),
$\mathbf{3 5 0 \%}$ correction broad $\boldsymbol{\Psi (3 7 7 0)} \boldsymbol{-} \boldsymbol{\Psi}(4415)$ on average - new result
2. N.B magnitude 2.5 not a big surprise but that they
i) all have "same sign" \& ii) sign negative challenqes quark-hadron dualitv* (nominal correction 50% learned previous slide)
is it all QCD? Can we assess it? partially through
[^0]
c) dispersion relations and quark hadron duality (qhd) ${ }^{1}$

- amplitude $\mathrm{H}\left(\mathrm{q}^{2}\right)$ if know analytic structure in q^{2} by Cauchy thm integral rep:

$$
H\left(q^{2}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H(t)}{t-q^{2}-i 0} \quad \text {, modulo subtractions }
$$

- if $H^{P Q C D}\left(S_{0}\right) \cong H^{Q C D}\left(S_{0}\right)$ then quark hadron duality:

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H^{p Q C D}(t)}{t-q^{2}-i 0} \simeq \frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H^{Q C D}(t)}{t-q^{2}-i 0}
$$

- for amplitudes $H\left(q^{2}\right)$, Г related to (in principle) experimentally accessible region²
${ }^{1}$ qhd-(violation) sometimes (Shifman et al) means OPE-violating term - here different usage
2 not valid for decay rate (in this form) in general unless can write rate in terms of amplitude (e.g. inclusive decays)
- analytic structure of charm amplitude cut starting at $4 \mathrm{~m}^{2}$ poles at $\mathrm{m}_{\mathrm{J}} / \psi^{2}$ resp.

a) if information in all 3 regions \Rightarrow check whether microscopic theory is compatible
b) semi-global qhd: approx equality of pQCD \& QCD dispersion- \int holds in (sub)region

a) information available in all regions
b) semi-global qhd "works" in all three regions
- $\mathrm{B} \rightarrow \mathrm{KI}+\mathrm{I}^{-}$
a) no info available in region 3 (region 1 we may gét ...) $)^{\substack{10 \\ q^{2}\left[\operatorname{Cov}^{2}\right]}}$
b) region 2 semi-global qhd does not seem to hold

hence:

- a must: check semi-global qhd region 1+2
- if does not work:
one possibility that region 3 (crossed process $\boldsymbol{\Psi} \rightarrow \mathbf{B + K}$) compensates

> recall: region 1 phases are as of now missing let's look at implications

3) possible consequences at low q^{2} (yet) unknown $\delta_{/ / 4 k\left({ }^{*}\right)}$-phases

the unknown J/ Ψ phase

$$
\eta_{J / \Psi K}=\left|\eta_{J / \Psi K}\right| e^{i \delta_{J / \Psi K}} \simeq 1.4 e^{i \delta_{J / \Psi K}}
$$

- to match/fit slop of pQCD charm $\boldsymbol{\delta}_{J / \boldsymbol{\mu}} \simeq \mathbf{0}$ e.g. Khodjamirian et al' 10 and others
- let's change phase to $\delta_{J / \psi K} \simeq \pi$ and compare with $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$

- $\delta_{J / \psi K} \simeq \pi$ matched charm amplitude to SM at $\mathrm{q}^{2}=0$
well but then slope of charm amplitude (not to be confused with rate) has wrong sign as w.r.t. to $S M \Rightarrow$ more precise data binning

possible relation to \mathbf{P}_{5}, preliminary sketch

angular observable: $P_{5}^{\prime} \sim \operatorname{Re}\left[H_{0} H_{\perp}^{*}\right]$
"form factor insensitive observables" Descotes., Matias, Ramon, Virto'12

- [4.3,8.68]-bin : LHCb: $P_{5}{ }^{\prime} \simeq-0.19(16)$ and SM-naive fac: $P_{5}{ }^{\prime} \simeq-(0.8-0.9)$
- why P_{5} '-anomaly could be related to charm (or SM)
- anomaly close to J / Ψ \& charm effects turn out to be large
- only present in vector helicity amplitude (can be mediated by photon)
- similar story as for K: global phase of helicity amplitudes unknown $\delta_{J / \Psi K^{*}} \simeq 0$ to match SM used theorists if we take $\delta_{J / \psi K^{*}} \simeq \pi$ then $\Delta P_{5}{ }^{\prime} \simeq-0.3$ get rather close to LHCb-value

4) implication for high $\mathbf{q}^{\mathbf{2}}$-observables

Binned $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ high $\mathbf{q}^{\mathbf{2}}$: a priori and a posteriori

- ratio of $\mathrm{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ using
i) factorisation perturbative (no resonances)
ii) factorisation (BES-data)
vs data as function lower bin bdry so
basically as good as data (by construction)

for angular observables issue more subtle as their can be cancellations in ratio

right-handed currents (RHC) vs non-universal polarisation in $B \rightarrow K^{*} \|$

(assue imminent from structure of helicity amplitudes
$H_{0}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{0}^{V}\left(q^{2}\right)+. ., \quad H_{\|}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{\|}^{V}\left(q^{2}\right)+. ., \quad H_{\perp}^{V} \sim \sqrt{\lambda_{K^{*}}}\left(C_{9}+C_{9}^{\prime}\right) \hat{H}_{\perp}^{V}\left(q^{2}\right)+. .$,
RHC Cg' $\neq 0$ intertwined polarisation effects $0, \|, \perp$
polarisation universality: fac and non-fac depend same way on pol.

$$
\frac{\left|H_{0}^{V}\right|}{\left|H_{\|}^{V}\right|} \stackrel{?}{\simeq} \frac{\left|f_{0}^{V}\right|}{\left|f_{\|}^{0}\right|} \quad \text { for some } q^{2}, f \text { form factor }
$$ universal

S-state: J/ Ψ ok, $\Psi(2 S)$ okish,
P-state: $\chi_{\mathrm{c} 1}$ broken
D-state: $\Psi(3370), \Psi(4160) ?$ - experimentally accessible

> what is the pattern?
a if polarisation universal then $B r$, tot $\left(B \rightarrow K^{*} \|\right)$ good observable to test for right-handed currents*

a if polarisation universal and no RHC then resonance effect minimal in class of observables Hiller and RZ',13
 has 2.5 as much resonances!
N.B. endpoint all curves asymptotes $1 / 3$

[^1]
conclusions and summary

a General: $\mathbf{B} \rightarrow \mathbf{K I I}$ a) rich information angles \& \mathbf{q}^{2}-shape
b) long distances effects to deal with

In relation to b) long versus short-distance effects?
If non form factor \boldsymbol{q}^{2}-dependence \Rightarrow long-distance new physics*
a factorisation approximation fails spectacularly - pressure on SM(QCD) new physics in bscc-operators? (contrived)
\Rightarrow need more experimental information, finer binning low q^{2}
a change in $\delta_{J / \psi} \simeq \pi$ (empirically unknown) fits shape and magnitude of $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ low q^{2} and also looks promising for $\mathrm{P}_{5}{ }^{\prime}$

- whereas charm can explain some "anomalies"
i) of course there is room for short-distance new physics in C_{9} eff
ii) progress in form factor correlations (backup) should help in searches due to use of Ward identities (e.o.m.)
iii) charm resonances are lepton-universal \Rightarrow no relation to R_{k}

backup slides

comment on form factor correlations

Wse of equation of madion fion fiomm fiactors

- Consider QCD e.o.m./Ward-identity (study correction Isgur-Wise relations)

Grinstein Piriol'O4
$i \partial^{\nu}\left(\bar{s} i \sigma_{\mu \nu}\left(\gamma_{5}\right) b\right)=-\left(m_{s} \pm m_{b}\right) \bar{s} \gamma_{\mu}\left(\gamma_{5}\right) b+i \partial_{\mu}\left(\bar{s}\left(\gamma_{5}\right) b\right)-2 \bar{s} i \stackrel{\leftarrow}{D_{\mu}}\left(\gamma_{5}\right) b$

- Evaluate op $\left\langle\mathrm{K}^{*}\right| \ldots|\mathrm{B}\rangle$ get 4 independent equations e.g.

$$
T_{1}\left(q^{2}\right)-\frac{\left(m_{b}+m_{s}\right)}{m_{B}+m_{K^{*}}} V\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0
$$

- 1) any determination of form factors must satisfy e.o.m.

2) Correlation function lattice/LCSR are compatible e.o.m. up to irrelevant contact terms

$$
T_{1}\left(q^{2}\right)-\frac{\left(m_{b}+m_{s}\right)}{m_{B}+m_{K^{*}}} V\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0
$$

- 1) denote $F\left(q^{2}\right)^{s_{0}^{F}, M_{F}^{2}}, \quad s_{0}^{F}$ threshold, M_{F}^{2} Borel parameter then compatible with eom $s_{0}^{T_{1}}=s_{0}^{V}=s_{0}^{\mathcal{D}_{1}} \quad$ and $\quad M_{T_{1}}^{2}=M_{V}^{2}=M_{\mathcal{D}_{1}}^{2}$ 2) observe $\mathrm{T}_{1}, \mathrm{~V}_{\text {» }} \mathrm{D}_{1}\left(5 \%\right.$ maximal) over q^{2}-range $[0,15] \mathrm{GeV}^{2}$
- even associate 40% uncertainty to D_{1} then ratio

$$
r_{\perp}=\frac{\left(m_{b}+m_{s}\right)}{m_{B}+m_{K^{*}}} \frac{V\left(q^{2}\right)}{T_{1}\left(q^{2}\right)} \quad \text { determined up to } 2 \%
$$

Crucial for $\mathrm{B} \rightarrow \mathrm{K}^{*} \|$ pheno as determines zero of helicity amplitude

* means that so and M^{2} of T_{1} and V highly correlated

[^0]: ${ }^{1}$ depends on "choice" of Wilson coeff. - yet ratio of n's is well defined!

[^1]: * assumes effect same magnitude in $B \rightarrow K^{*} l l$ (could be bit smaller or larger in reality)

