Non-perturbative effects in \mathcal{B} -> $\mathcal{L}(*)$ ll (charm resonances)

Lyon and RZ 1406.0566v1(v2 to appear)

Roman Zwicky Edinburgh University

8 January 2015 — The flavour of new physics (Zurich)

work triggered by LHCb measurement — PRL 111 (2013)

- very pronounced resonance spectrum through b->s(cc->ll)
- is it all QCD? .. new bscc-physics is contrived and constrained(?)
- what are the implications for prediction is it related to 3.7σ tension SM:

structure

- 0) general overview
- 1) assessment: (naive) factorisation fails non-factorisable corrections
- 2) tension with QCD? (semi-global quark hadron duality)
- 3) possible consequences at **low q**²
 (yet) unknown J/ Ψ -phases affect B \rightarrow KII & P₅'

4) implications at **high q²** (broad charm region) ideas to improve (skip as dinner approaching)

Phenomenology of B→K(*)II

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_K d\phi} = (J_{1s} + J_{2s}\cos2\theta_\ell + J_{6s}\cos\theta_\ell)\sin^2\theta_K + (J_{1c} + J_{2c}\cos2\theta_\ell + J_{6c}\cos\theta_\ell)\cos^2\theta_K + (J_3\cos2\phi + J_9\sin2\phi)\sin^2\theta_K\sin^2\theta_\ell + (J_4\cos\phi + J_8\sin\phi)\sin2\theta_K\sin2\theta_\ell + (J_5\cos\phi + J_7\sin\phi)\sin2\theta_K\sin\theta_\ell,$$

 $J_i \propto H_a H_b^* \times \text{kinematics}$

for generic dim 6 Heff

B→K^(*)II under microscope

main actors of this talk (same quantum numbers!)

electroweak penguin (also O7...)

4-quark operators (also $O_{3..6}$)

1) assessment of (charm) resonances

vac. pol. h(q²) (for B->KII) from e+e-→hadrons as for (g-2)

Re[h] dispersion relation

our $\chi^2/dof = 1.015$

Factorisation (BESII-data) applied to B→KII at high q²

clear failure of factorisation

clarifying status of factorisation of importance since:

- factorisation used estimate of "duality violations"
- perturbative factorisation used in most high-q² OPE predictions

B. probing non-factorisable effects

think resonances described Breit-Wigner

N.B. 1) location of pole & 2) residue are physical!

$$\mathcal{A}(B \to K\ell\ell)|_{q^2 \simeq m_{\Psi}^2} = \frac{\mathcal{A}(B \to \Psi K)\mathcal{A}^*(\Psi \to \ell\ell)}{q^2 - m_{\Psi}^2 + im_{\Psi}\Gamma_{\Psi}} + \dots$$

idea: correct for Ψ-production (residue physical)

$$\mathcal{A}(B \to \Psi K)|_{\text{fac}} \sim f_{+}^{B \to K}(q^{2})\mathcal{A}(\Psi \to \ell\ell)$$

$$\to f_{+}^{B \to K}(q^{2})\underbrace{\eta_{\Psi}}\mathcal{A}(\Psi \to \ell\ell) \sim \mathcal{A}(B \to \Psi K)$$

$$1+\text{non-fac}$$

fits ηψ: b) global (scaled)fac; c) real-variable; d) complex-variable

only option d) sensible a priori

results

Fit	$\eta_{\mathcal{B}}$	η_c	$ \eta_{\Psi(2S)} $	$\eta_{\Psi(3770)}$	$\eta_{\Psi(4040)}$	$\eta_{\Psi(4160)}$	$\eta_{\Psi(4415)}$	$\chi^2/{ m d.o.f.}$	d.o.f.	pts	p-value
a)	1.02	≡ 1	≡ 1	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	3.59	99	117	$\simeq 10^{-30}$
b)	1.02	-2.55	≡ 1	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	1.334	98	117	1.5%
c)	0.77	≡ 1	-1.3	-7.2	-1.9	-4.6	-3.0	1.169	94	117	12%
d)	1.00	≡ 1	3.8 - 5.1i	-0.1-2.3i	-0.5- $1.2i$	-3.0 - 3.1i	-4.5+2.3i		89	117	20%
			$6.4e^{-i53.3^{\circ}}$	$2.0e^{-i92^{\circ}}$	$1.3e^{-i111^{\circ}}$	$4.3e^{-i135^{\circ}}$	$5.1e^{i153^{\circ}}$				

2) assessment from theory viewpoint

is it or isn't it all that surprising?

- a) patrons
- b) hadrons
- c) linked dispersion integrals quark hadron duality

a) how large are partonic non-fac. corrections

- from pQCD alone not chance to resolve locally in q²
- at high q²: q² is a large scale can integrate out charm quarks
 so-called high-q² "OPE"
 Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

factorisation (BESII)

Lyon RZ'14

dim-3 vertex-corrections

Hurth, Isidori, Ghinculov, Yao'03 Greub, Pilipp, Schupach'08

100% in our units

roughly -50% throughout q²domain

N.B. large due to colorenhancement
(not repeated higher orders)

dim-5 spectator & soft gluon

Beylich, Buchalla, Feldmann'11

small O(2%) QCDF consistent dim. suppression

-50%-correction is nowhere near -350%

b) factorisation as a function of m_{Ψ}

- experimental information on B→J/ΨK^(*) and B→Ψ(2S)K^(*)
 ⇒ quantify correction to factorisation: ηψ = 1 + non-fac ¹
 - J/Ψ $\Psi(2S)$ $\Psi(3370)...\Psi(4415)$ m_{Ψ}/GeV $|\eta_{J/\Psi K}| \simeq 1.42$ $|\eta_{\Psi(2S)K}| \simeq 1.82$ $new: \eta_{\Psi(broad)K} \simeq -2.5$ $|\eta_{J/\Psi K^*}| \simeq 1.03$ $|\eta_{\Psi(2S)K^*}| \simeq 1.06$
 - whereas corrections to J/Ψ, Ψ(2S) could be 40%, 80% "only" (order of vertex corrections),
 350% correction broad Ψ(3770) Ψ(4415) on average new result
 - 2. N.B magnitude 2.5 not a big surprise but that they
 - i) all have "same sign" & ii) sign negative

challenges quark-hadron duality* (nominal correction 50% learned previous slide)

is it all QCD? Can we assess it? partially through

¹ depends on "choice" of Wilson coeff. - yet ratio of η's is well defined!

c) dispersion relations and quark hadron duality (qhd) 1

amplitude H(q²) if know analytic structure in q² by Cauchy thm integral rep:

$$H(q^2) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dt H(t)}{t - q^2 - i0}$$
, modulo subtractions

• if $H^{pQCD}(s_0) \cong H^{QCD}(s_0)$ then quark hadron duality:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{dt H^{pQCD}(t)}{t - q^2 - i0} \simeq \frac{1}{2\pi i} \int_{\Gamma} \frac{dt H^{QCD}(t)}{t - q^2 - i0}$$

for amplitudes H(q²), Γ related to (in principle) experimentally accessible region²

¹ qhd-(violation) sometimes (Shifman et al) means OPE-violating term - here different usage

² not valid for decay rate (in this form) in general unless can write rate in terms of amplitude (e.g. inclusive decays)

analytic structure of charm amplitude cut starting at $4m_c^2$ poles at $m_{J/\Psi}^2$ resp.

- a) **if** information in all 3 regions \Rightarrow check whether microscopic theory is compatible
- b) **semi-global qhd**: approx equality of pQCD & QCD dispersion-\(\) holds in (sub)region

factorisable charmloop $h_c(q^2)$

- e+e-→Ψ→e+e- "dreamland"
 - a) information available in all regions

b) region 2 semi-global qhd does not seem to hold

hence:

- a must: check semi-global qhd region 1+2
- if does not work:
 one possibility that region 3 (crossed process Ψ→B+K) compensates

recall: region 1 phases are as of now missing let's look at implications

3) possible consequences at low q^2 (yet) unknown $\delta_{J/\Psi K(*)}$ -phases

the unknown J/Ψ phase

$$\eta_{J/\Psi K} = |\eta_{J/\Psi K}| e^{i\delta_{J/\Psi K}} \simeq 1.4 e^{i\delta_{J/\Psi K}}$$

- to match/fit slop of pQCD charm $\delta_{J/\Psi} \simeq 0$ e.g. Khodjamirian et al'10 and others
- let's change phase to δ_{J/ΨK} ≃ π and compare with Br(B→KII)

• δ_{J/ΨK} $\simeq \pi$ matched charm amplitude to SM at q² =0 well but then slope of charm amplitude (not to be confused with rate) has wrong sign as w.r.t. to SM \implies more precise data binning

possible relation to P₅,

preliminary sketch

angular observable: $P_5' \sim \text{Re}[H_0 H_{\perp}^*]$

"form factor insensitive observables" Descotes., Matias, Ramon, Virto'12

- [4.3,8.68]-bin: LHCb: $P_5' \approx -0.19(16)$ and SM-naive fac: $P_5' \approx -(0.8-0.9)$
- why P₅'-anomaly could be related to charm (or SM)
 - anomaly close to J/Ψ & charm effects turn out to be large
 - only present in vector helicity amplitude (can be mediated by photon)
- similar story as for K: global phase of helicity amplitudes unknown $δ_{J/ΨK*} ≃ 0$ to match SM used theorists

if we take $\delta_{J/\Psi K^*} \simeq \pi$ then $\Delta P_5' \simeq -0.3$ get rather close to LHCb-value

4) implication for high q²-observables

Binned Br(B→KII) high q²: a priori and a posteriori

- ratio of Br(B→KII) using
 - i) factorisation perturbative (no resonances)
 - ii) factorisation (BES-data)

vs data as function lower bin bdry so

$$\frac{\text{Br}(B^+ \to K^+ \ell \ell)_{[s_0, s_1]}^{i), ii)}{\text{Br}(B^+ \to K^+ \ell \ell)_{[s_0, s_1]}^{fit-d)}}$$

basically as good as data (by construction)

for angular observables issue more subtle as their can be cancellations in ratio

right-handed currents (RHC) vs non-universal polarisation in B→K*II

issue imminent from structure of helicity amplitudes

$$H_0^V \sim \left(C_9 - C_9'\right) \hat{H}_{\textcolor{red}{0}}^{V}(q^2) + ... \,, \quad H_{\parallel}^V \sim \left(C_9 - C_9'\right) \hat{H}_{\textcolor{red}{\parallel}}^V(q^2) + ... \,, \quad H_{\perp}^V \sim \sqrt{\lambda_{K^*}} \left(C_9 + C_9'\right) \hat{H}_{\perp}^V(q^2) + ... \,,$$

RHC C₉'≠0 intertwined polarisation effects 0,||,⊥

polarisation universality: fac and non-fac depend same way on pol.

$$\frac{|H_0^V|}{|H_\parallel^V|} \stackrel{?}{\simeq} \frac{|f_0^V|}{|f_\parallel^0|} \quad \text{for some } q^2, \ f \ \text{form factor}$$

polarisationuniversal

S-state: J/ Ψ ok, Ψ (2S) okish,

P-state: χ_{c1} broken

D-state: $\Psi(3370), \Psi(4160)$? — experimentally accessible

what is the pattern?

if polarisation universal then Br_{L,tot}(B→K*II) good observable to test for right-handed currents*

if polarisation universal and **no RHC** then resonance effect minimal in class of observables Hiller and RZ'13

e.g. **black** and **green** curve nearly **identical** even though green curve has 2.5 as much resonances!

N.B. endpoint all curves asymptotes 1/3

^{*} assumes effect same magnitude in $B \rightarrow K^* II$ (could be bit smaller or larger in reality)

conclusions and summary

- General: B→KII a) rich information angles & q²-shape
 - b) long distances effects to deal with
- In relation to b) long versus short-distance effects?

 If non form factor q^2 -dependence \Rightarrow long-distance new physics*
- factorisation approximation fails spectacularly pressure on SM(QCD) new physics in bscc-operators? (contrived)
 - ⇒ need more experimental information, finer binning low q²
- change in $\delta_{J/\Psi} \simeq \pi$ (empirically unknown) fits **shape** and magnitude of Br(B→KII) low q² and also looks promising for P₅'
- whereas charm can explain some "anomalies"
 - i) of course there is room for short-distance new physics in C₉eff
 - ii) progress in form factor correlations (backup) should help in searches due to use of Ward identities (e.o.m.)
 - iii) charm resonances are lepton-universal ⇒ no relation to R_K

thanks for your attention

backup slides

comment on form factor correlations

Use of equation of motion for form factors

Consider QCD e.o.m./Ward-identity (study correction Isgur-Wise relations)

Grinstein Piriol'04

$$i\partial^{\nu}(\bar{s}i\sigma_{\mu\nu}(\gamma_5)b) = -(m_s \pm m_b)\bar{s}\gamma_{\mu}(\gamma_5)b + i\partial_{\mu}(\bar{s}(\gamma_5)b) - 2\bar{s}i\stackrel{\leftarrow}{D}_{\mu}(\gamma_5)b$$
 • Evaluate on $\langle \mathsf{K}^*|\dots|\mathsf{B}\rangle$ get 4 independent equations e.g.
$$T_1(q^2) - \frac{(m_b + m_s)}{m_B + m_{K^*}}V(q^2) + \mathcal{D}_1(q^2) = 0$$

$$T_1(q^2) - \frac{(m_b + m_s)}{m_B + m_{K^*}} V(q^2) + \mathcal{D}_1(q^2) = 0$$

- 1) any determination of form factors must satisfy e.o.m.
 - 2) Correlation function lattice/LCSR are compatible e.o.m. up to irrelevant contact terms

Hambrock, Hiller, Schacht, Zwicky '13 Bharucha, Straub, Zwicky'14 (to appear)

$$T_1(q^2) - \frac{(m_b + m_s)}{m_B + m_{K^*}} V(q^2) + \mathcal{D}_1(q^2) = 0$$

- 1) denote $F(q^2)^{s_0^F,M_F^2}$, s_0^F threshold, M_F^2 Borel parameter then compatible with eom $s_0^{T_1}=s_0^V=s_0^{\mathcal{D}_1}$ and $M_{T_1}^2=M_V^2=M_{\mathcal{D}_1}^2$ 2) observe T₁,V» D₁ (5% maximal) over q²-range [0,15]GeV²
- even associate 40% uncertainty to D₁ then ratio

$$r_{\perp}=rac{(m_b+m_s)}{m_B+m_{K^*}}rac{V(q^2)}{T_1(q^2)}$$
 determined up to 2%

Crucial for B→K*II pheno as determines zero of helicity amplitude

^{*} means that s_0 and M^2 of T_1 and V highly correlated