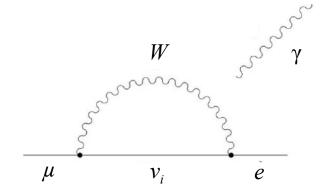
ZPW2015: The flavour of new physics University of Zurich, January 9th 2015

Lepton Flavour Violation in SUSY models

Lorenzo Calibbi ULB

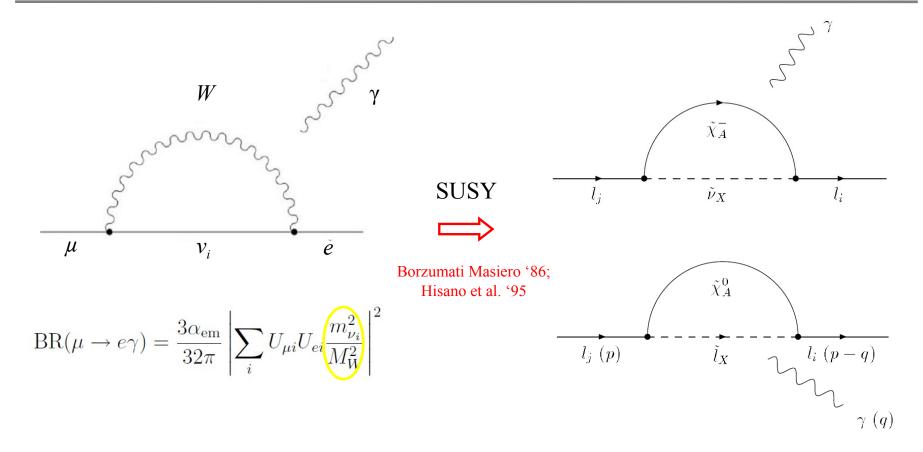


Why charged Lepton Flavour Violation?

- Neutrinos oscillate → Lepton family numbers are not conserved!
- Can we observe LFV in charged leptons decays?
- In the SM + massive neutrinos:

$$BR(\mu \to e\gamma) = \frac{3\alpha_{\rm em}}{32\pi} \left| \sum_{i} U_{\mu i} U_{ei} \frac{m_{\nu_i}^2}{M_W^2} \right|^2$$

$$\implies$$
 BR($\mu \to e\gamma$) $\lesssim \mathcal{O}(10^{-50})$


Suppression due to small neutrino masses

Cheng Li '77, '80; Petcov '77

In presence of New Physics at 'low' scales we can expect large effects!

Why charged Lepton Flavour Violation?

- Unambiguous signal of New Physics
- Stringent test of NP models
- It probes scales far beyond the LHC reach

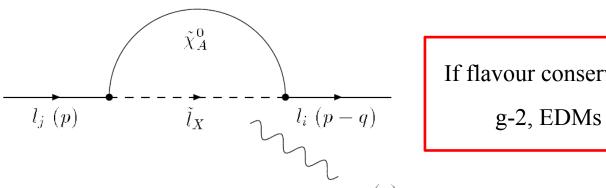
Probing high-energy scales

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d \geq 5} rac{c_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; \mathit{O}_{ij}^{(d)}$$

 $BR(\mu \to e\gamma) < 5 \times 10^{-14}$

Process	Relevant operators	Present Bound on Λ (TeV)		Future Bound on Λ (TeV)	
		$C = 1/16\pi^2$	C = 1	$C = 1/16\pi^2$	C=1
$\mu \to e \gamma$	$\frac{C}{\Lambda^2} \frac{m_\mu}{16\pi^2} \overline{\mu}_L \sigma^{\mu\nu} e_R F_{\mu\nu}$	50	_	90	_
$\mu o eee$	$\frac{\frac{C}{\Lambda^2}(\overline{\mu}_L \gamma^{\mu} e_L)(\overline{e}_L \gamma^{\mu} e_L)}{(\overline{e}_L \gamma^{\mu} e_L)}$	17	210	170	2100
	$\frac{C}{\Lambda^2}(\overline{\mu}_L e_R)(\overline{e}_R e_L)$	10	120	100	1200
$\mu ightarrow e$ in Ti	$\frac{C}{\Lambda^2} (\overline{\mu}_L \gamma^\mu e_L) (\overline{d}_L \gamma^\mu d_L)$	30	420	580	7300
	$\frac{C}{\Lambda^2}(\overline{\mu}_L e_R)(\overline{d}_R d_L)$	60	750	1000	13000

updated from LC Lalak Pokorski Ziegler '12


$$BR(\mu \to eee) < 10^{-16}$$

 $CR(\mu \to e \text{ in Ti}) < 5 \times 10^{-17}$

Charged Lepton Flavour Violation in SUSY

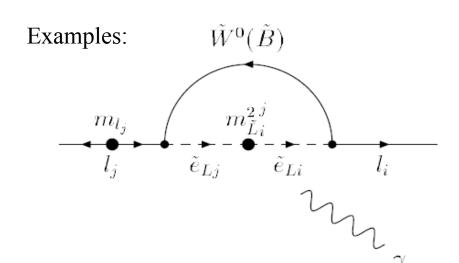
Slepton mass matrix:

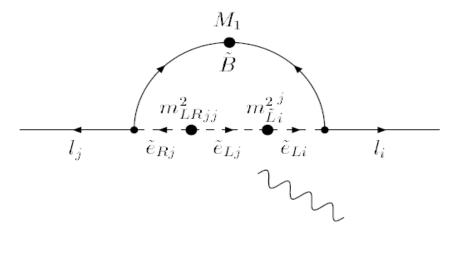
$$m_{\tilde{\ell}}^{2} = \begin{pmatrix} (\tilde{m}_{L}^{2})_{ij} + (m_{\ell}^{2})_{ij} - m_{Z}^{2}(\frac{1}{2} - \sin^{2}\theta_{W})\delta_{ij} & A_{ji}^{\ell*}v_{d} - (m_{\ell})_{ji}\mu\tan\beta \\ A_{ij}^{\ell}v_{d} - (m_{\ell})_{ij}\mu^{*}\tan\beta & (\tilde{m}_{E}^{2})_{ij} + (m_{\ell}^{2})_{ij} - m_{Z}^{2}\sin^{2}\theta_{W}\delta_{ij} \end{pmatrix}$$

If flavour conserving:

$$T = m_{l_i} \epsilon^{\lambda} \overline{u}_j(p-q) [iq^{\nu} \sigma_{\lambda\nu} (A_L P_L + A_R P_R)] u_i(p)$$

$$\frac{BR(l_i \to l_j \gamma)}{BR(l_i \to l_j \nu_i \bar{\nu_j})} = \frac{48\pi^3 \alpha}{G_F^2} (|A_L^{ij}|^2 + |A_R^{ij}|^2)$$

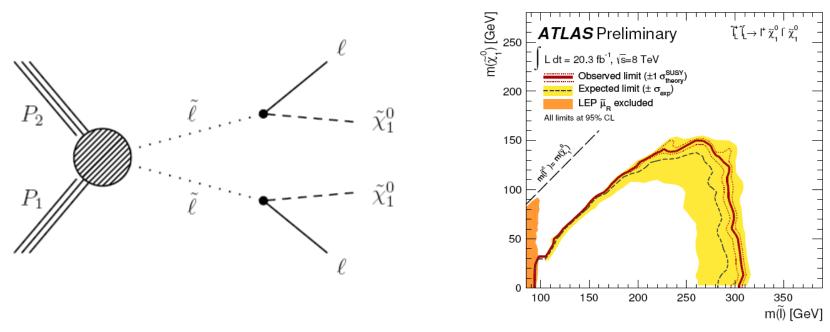

Hisano et al. '95


Mass Insertion Approximation

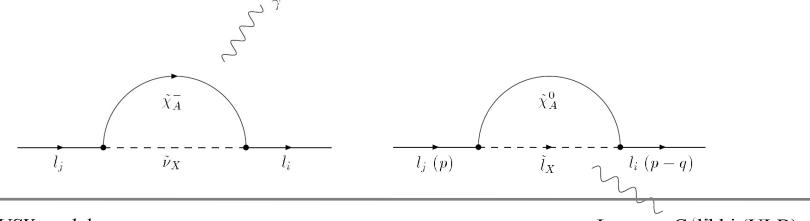
Slepton mass matrix:

Hall Kostelecky Raby '86 Pokorski Rosiek Savoy '99

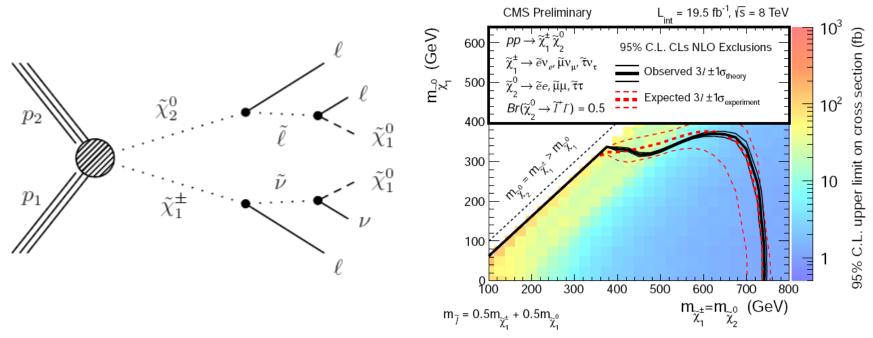
$$(\tilde{l}_L^{\dagger} \tilde{l}_R^{\dagger}) \begin{pmatrix} m_L^2 (1 + \delta_{LL}) & (A - \mu \tan \beta) m_l + m_L m_R \delta_{LR} \\ (A - \mu \tan \beta) m_l + m_L m_R \delta_{LR}^{\dagger} & m_R^2 (1 + \delta_{RR}) \end{pmatrix} \begin{pmatrix} \tilde{l}_L \\ \tilde{l}_R \end{pmatrix}$$

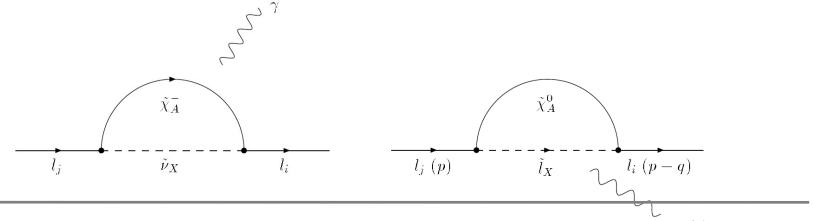

$$\frac{BR(l_i \to l_j \gamma)}{BR(l_i \to l_j \nu_i \bar{\nu}_j)} \propto \frac{\delta_{ij}^2}{\tilde{m}^2}$$

 \Longrightarrow


Limits on δ's

Gabbiani Masiero '89 Gabbiani et al. '96 Masina Savoy '02 Paradisi '05 ...

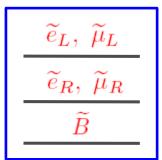

Comparing LFV and LHC bounds

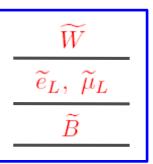

EW-searches at the LHC started to go considerably beyond the limits set by LEP They directly look for the particles that can induce LFV transitions

Comparing LFV and LHC bounds

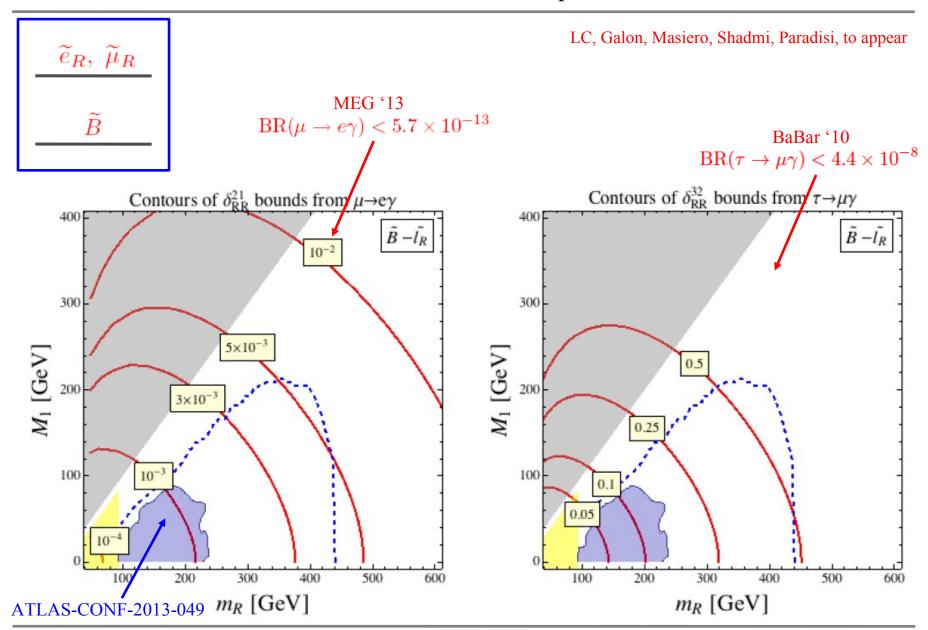
EW-searches at the LHC started to go considerably beyond the limits set by LEP They directly look for the particles that can induce LFV transitions

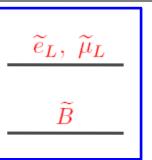
Comparing LFV and LHC bounds

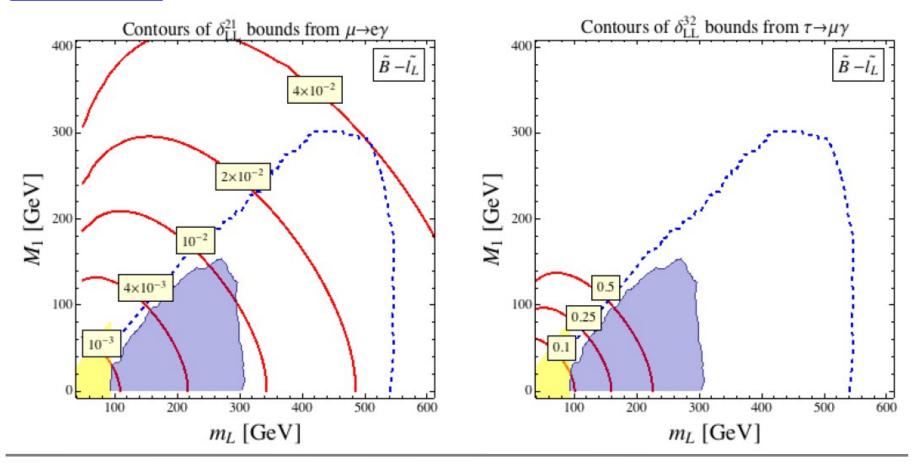

What is the impact of direct searches for SUSY particles at the LHC on the discovery prospects of LFV processes at low-energy experiments?


We can study LFV/LHC complementarity within the same simplified models used by the collaborations for the interpretation of the searches

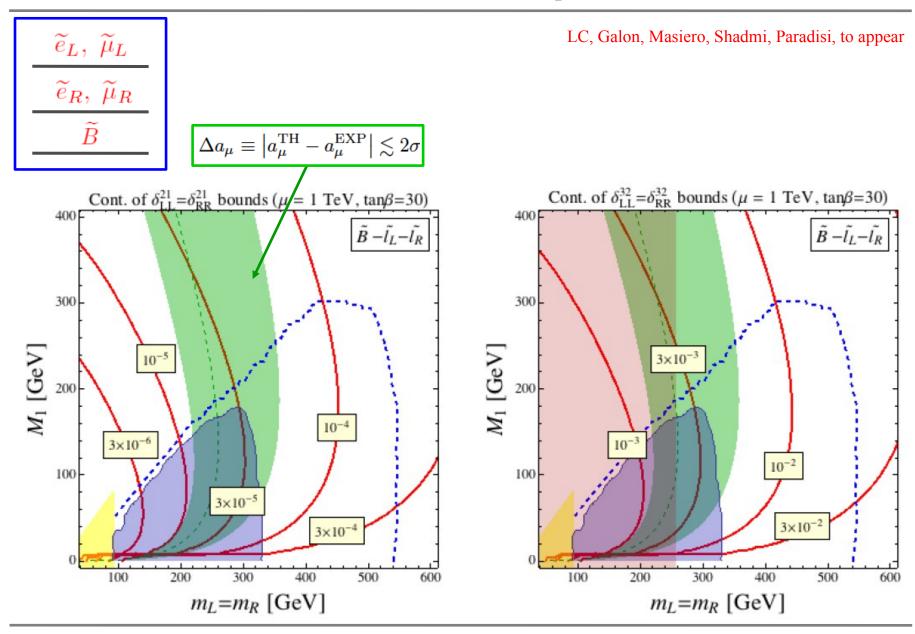
Examples:


$$\widetilde{e}_R,\ \widetilde{\mu}_R$$
 \widetilde{B}

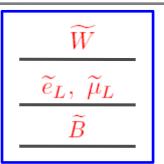

$$\widetilde{e}_L,\ \widetilde{\mu}_L$$
 \widetilde{B}



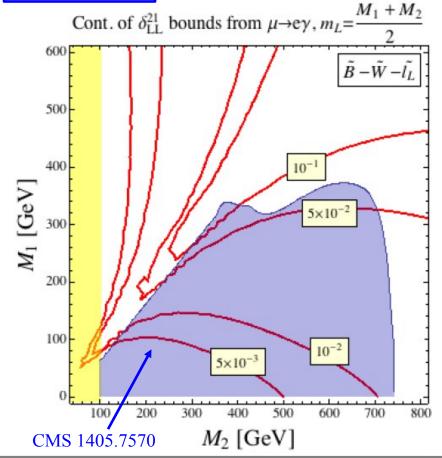
LFV vs LHC bounds within simplified models

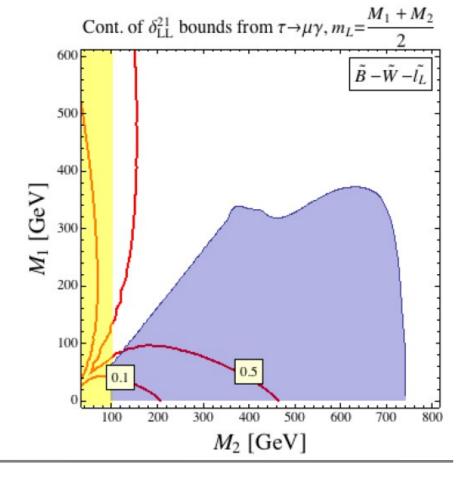


LC, Galon, Masiero, Shadmi, Paradisi, to appear

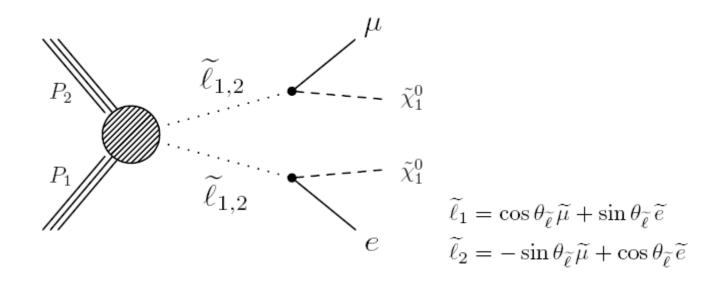


LFV in SUSY models


LFV vs LHC bounds within simplified models

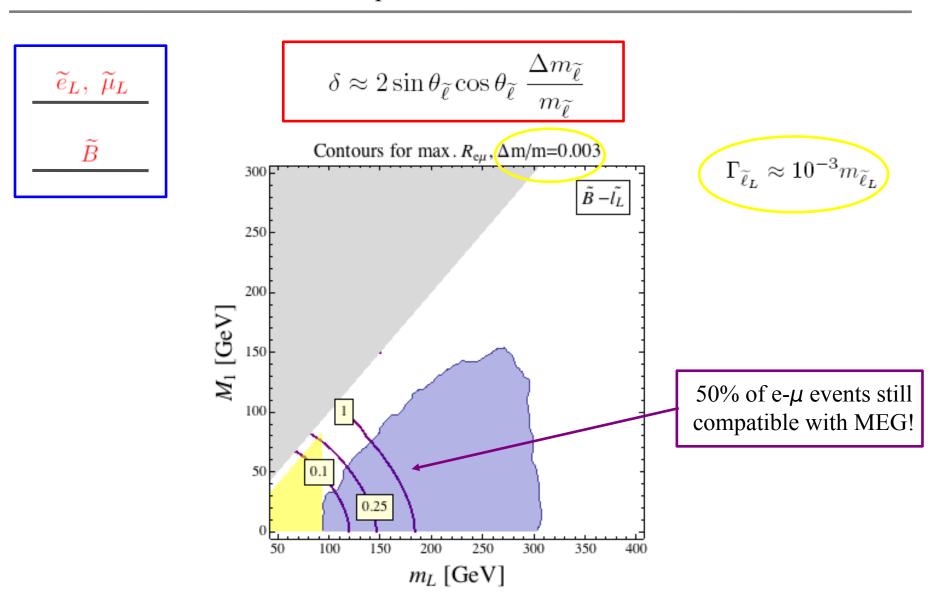


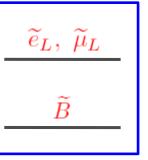
LFV vs LHC bounds within simplified models

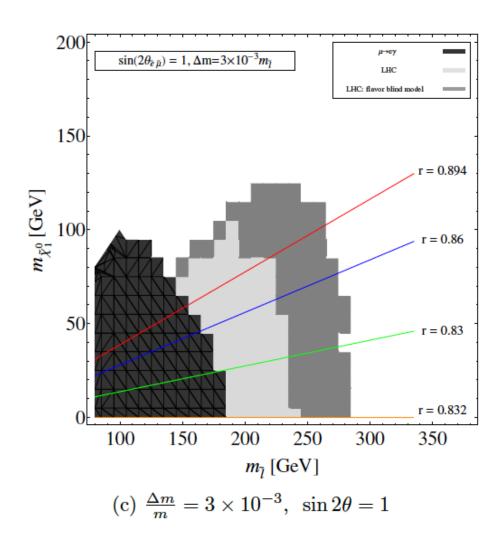


LC, Galon, Masiero, Shadmi, Paradisi, to appear

LFV processes at the LHC




Fraction of LFV events:


$$R_{e\mu} \equiv \frac{N(e^{+}\mu^{-}) + N(\mu^{+}e^{-})}{N(e^{+}e^{-}) + N(\mu^{+}\mu^{-})} = \frac{S_{e\mu}}{1 - S_{e\mu}} \qquad S_{e\mu} \equiv \frac{\sin^{2}2\theta}{2} \frac{x^{4} + 3x^{2}}{(1 + x^{2})^{2}}, \quad x \equiv \frac{\Delta m_{\tilde{\ell}}}{\Gamma_{\tilde{\ell}}}$$

Arkani-Hamed et al. '96. '97

For maximal smuon-selectron mixing, one has
$$R_{e\mu} \approx 50\%$$
 if $\Delta m_{\widetilde{\ell}} > \Gamma_{\widetilde{\ell}}$! (if $\Delta m_{\widetilde{\ell}} < \Gamma_{\widetilde{\ell}}$, decay is faster than oscillation) $\Gamma_{\widetilde{\ell}_L} \approx 10^{-3} m_{\widetilde{\ell}_L}$

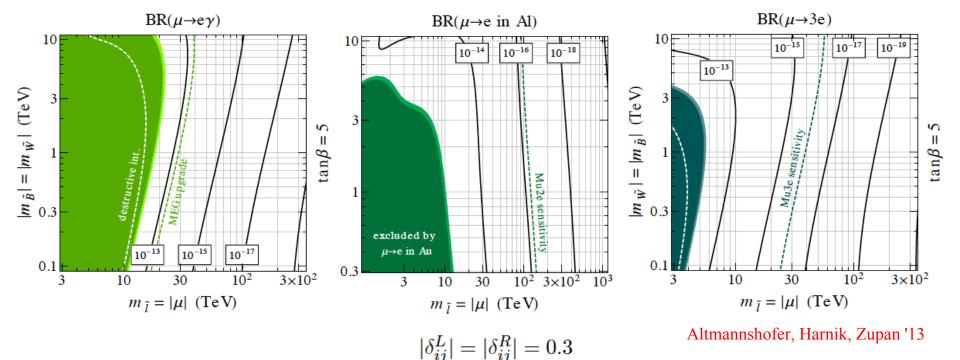
LHC bound relaxed down to 250 GeV (with 50% of e- μ events)!

Anatomy of LFV in SUSY models

Two ingredients: flavour structure of soft terms & the SUSY mass-scale

Overall suppression given by slepton and neutralino/chargino masses:

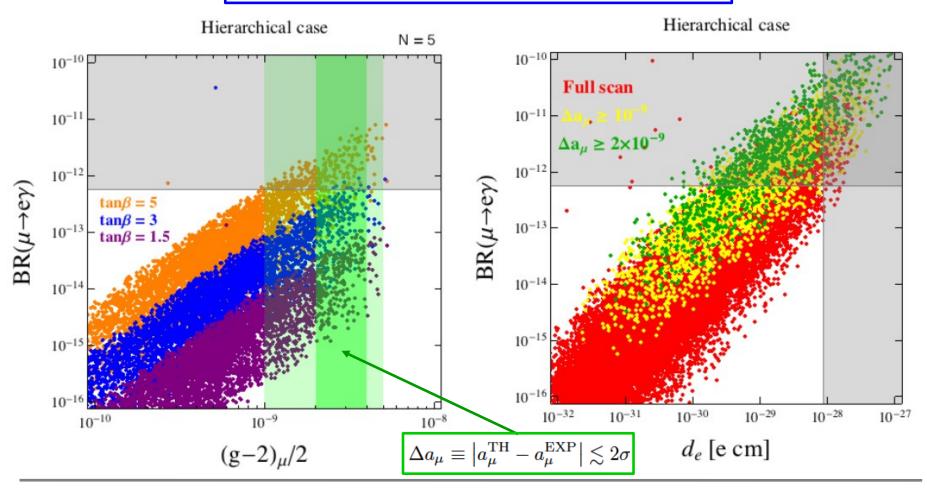
- LHC constraints (e.g. slepton masses > 200÷300 GeV)
- SUSY solution of (g-2)_u requires sleptons etc. below 1 TeV


The flavor structure of slepton mass matrices might be:

- anarchical (MEG constraint → super-heavy sleptons)
- controlled by the same dynamics generating the fermion masses (e.g. a flavour symmetry)
- trivial (no mixing): high-energy physics induced radiative corrections can give LFV

Anarchical flavour structure

Degenerate SUSY spectrum with O(1) flavour mixing:


$$\mathrm{BR}(\mu \to e \gamma) \sim 5 \times 10^{-13} \left(\frac{10 \mathrm{\ TeV}}{\tilde{m}}\right)^4 \tan^2 \beta$$

Flavour structure controlled by a flavour symmetry

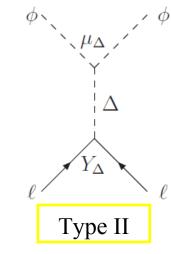
Example: gauge-mediated SUSY breaking with matter-messenger couplings (controlled by a U(1) FN flavour symmetry) LC, Paradisi, Ziegler '14

$$W = W_{(N)MSSM} + X\overline{\Phi}\Phi + (\lambda_E)_{ij}E_iL_j\Phi_D$$

Radiatively generated LFV

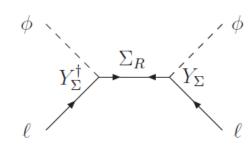
In SUSY, new fields interacting with the MSSM fields enter the radiative corrections of the sfermion masses

Hall Kostelecky Raby '86


 \Longrightarrow

Example: seesaw mechanism. LFV generically induced in the slepton mass matrix!

Borzumati Masiero '86


Seesaw models

Tree level generation of the neutrino mass operator:

Heavy scalar triplet

 $\frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{\ell_{L\alpha}^c} \tilde{\phi}^* \right) \left(\tilde{\phi}^{\dagger} \ell_{L\beta} \right)$

Type III

Heavy fermionic triplets

Heavy fermionic singlets

(RH neutrinos)

Radiatively generated LFV

In SUSY, new fields interacting with the MSSM fields enter the radiative corrections of the sfermion masses

Hall Kostelecky Raby '86

 \Longrightarrow

Example: seesaw mechanism. LFV generically induced in the slepton mass matrix!

Borzumati Masiero '86

Seesaw models

$$(\tilde{m}_L^2)_{ij} \propto m_0^2 \sum_k (\mathbf{Y}_N^*)_{ki} (\mathbf{Y}_N)_{kj} \ln \left(\frac{M_X}{M_{R_K}}\right)$$
$$\mathbf{Y}_N = \frac{1}{v_u} \sqrt{\mathbf{M}_R} \mathbf{R} \sqrt{\hat{\mathbf{m}}_{\nu}} U_{\text{PMNS}}^{\dagger}$$

Borzumati Masiero '86

$$(\tilde{m}_L^2)_{ij} \propto m_0^2 (\mathbf{Y}_{\Delta}^{\dagger} \mathbf{Y}_{\Delta})_{ij} \ln \left(\frac{M_X}{M_{\Delta}}\right) \propto m_0^2 (\mathbf{m}_{\nu}^{\dagger} \mathbf{m}_{\nu})_{ij} \ln \left(\frac{M_X}{M_{\Delta}}\right)$$

$$\mathbf{Y}_{\Delta} = \mathbf{m}_{\nu} \frac{M_{\Delta}}{\lambda v_{u}^{2}}$$

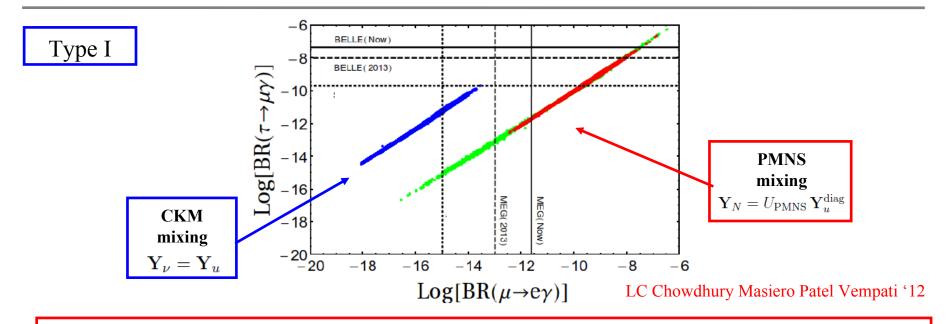
A. Rossi '02; Rossi Joaquim '06

Type III

Similar to type I

Biggio LC '10; Esteves et al. '10

τ - μ vs. μ -e transitions



Scenarios that could 'naturally' suppress $\mu \rightarrow e$ transitions relative to $\tau \rightarrow \mu$ cannot be realized with $\theta_{13} \sim O(0.1)$

Random variation of matrix *R* and neutrino parameters:

Type I
$$\frac{\mathrm{BR}(\tau \to \mu \gamma)}{\mathrm{BR}(\mu \to e \gamma)} \lesssim \mathcal{O}(1000) \implies \mathrm{BR}(\tau \to \mu \gamma) \lesssim \mathcal{O}(10^{-9})$$

Type II
$$\frac{\mathrm{BR}(\tau \to \mu \gamma)}{\mathrm{BR}(\mu \to e \gamma)} \lesssim 6 \implies \mathrm{BR}(\tau \to \mu \gamma) \lesssim 4 \times 10^{-12}$$

Scenarios that could 'naturally' suppress $\mu \rightarrow e$ transitions relative to $\tau \rightarrow \mu$ cannot be realized with $\theta_{13} \sim O(0.1)$

 θ_{13} measurements imply that SUSY seesaw(s) can be preferably tested through $\mu \rightarrow e$ transitions

Correlations in the μ -e sector

In SUSY (with R_P) $\mu \rightarrow eee$ and $\mu \rightarrow e$ conversion dominated by the dipole $\mu \rightarrow e\gamma^*$ Strong correlations:

not only seesaw models!

$$BR(\mu \to eee) \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_{\mu}^2}{m_e^2} - 3 \right) BR(\mu \to e\gamma)$$

$$CR(\mu \to e \text{ in N}) \simeq \alpha \times BR(\mu \to e\gamma) ,$$

- Sensitivities < 10⁻¹⁵ would go beyond MEG
 - Crucial model discriminators

In fact, there are models where $\mu \rightarrow eee$ and/or $\mu \rightarrow e$ conv. arise at tree-level.

Examples:

- SUSY with R-parity violation
- e.g. Dreiner Kramer O'Leary '06

Low-energy seesaw models

Abada et al '07

Low-energy flavor models

LC Lalak Pokorski Ziegler '12

Rates enhanced wrt. $\mu \rightarrow e\gamma$!

Concluding remarks

There is New Physics out there but we don't know the scale!

LFV processes are a unique laboratory to search for New Physics beyond the LHC reach

LFV and LHC highly complementary in testing TeV-scale New Physics

Exploring different channels is crucial to cover the full 'theory space'