The Flavor of Higgs

ZPW2015: The flavor of new physics

University of Zurich 7 January 2015

Yossi Nir (Weizmann Institute of Science)

The flavor of h

The flavor of h

Plan of Talk

1. Introduction Flavor@LHC

YN, Phys. Scripta T158 (2013) 014005

- 2. $h \rightarrow \ell_i \ell_j$: Theory Dery, Efrati, Hochberg, YN, JHEP 1305 (2013) 039 [1302.3229]
- 3. $t \rightarrow hq, h \rightarrow \tau l$: Model building Dery, Efrati, YN, Soreq, Susič, PRD 90 (2014) 115022 [1408.1371]
- 4. $h \to \tau \ell$:

Experiment Bressler, Dery, Efrati, PRD 90 (2014) 015025 [1405.3229]

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles? No idea. No signs of missing energy events BSM
- What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition $gg \rightarrow h, h \rightarrow \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated? If not 1st order PT – not electroweak baryogenesis
- What are the dark matter particles? No idea. No signs of missing energy events BSM
- What is the solution of the flavor puzzles? The topic of this talk

The flavor puzzles

• The SM flavor puzzle:

Why is there structure in the charged fermion flavor parameters?

- Smallness and hierarchy
- The SM flavor puzzle extended: Why is the neutrino flavor structure different? Neither smallness nor hierarchy
- The NP flavor puzzle:

If there is TeV-scale NP, why doesn't it affect FCNC? Degeneracy and alignment

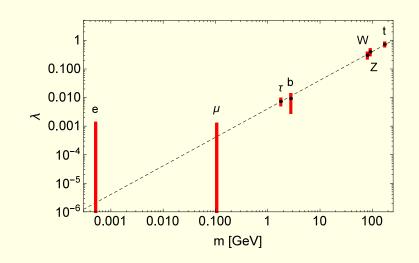
Can we make progress?

- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even an archical
- The NP flavor puzzle: With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM

Can we make progress?

- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even an archical
- The NP flavor puzzle: With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM
- $h \implies$ The "NP" is already here! $Y_{\bar{f}_i f_j}$ are new flavor parameters that can be measured

Relevant data



Observable	Experiment	
$R_{\gamma\gamma}$	1.15 ± 0.18	
R_{ZZ^*}	1.2 ± 0.2	
R_{WW^*}	0.9 ± 0.2	
$R_{bar{b}}$	0.7 ± 0.3	
$R_{ au au}$	1.04 ± 0.23	
$R_{\mu\mu}$	< 7	
R_{ee}	$< 4 \times 10^5$	

•
$$R_f = \frac{\sigma_{\text{prod}} BR(h \to f)}{[\sigma_{\text{prod}} BR(h \to f)]^{SM}}$$

The flavor of h

 $Y_f \propto m_f$?

A. Efrati

- Indication that Y_t, Y_b, Y_τ not far from SM
- The beginning of Higgs flavor physics

Avital Dery, Aielet Efrati, Yonit Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Avital Dery, Aielet Efrati, Gudrun Hiller, Yonit Hochberg, YN, JHEP1308,006 [arXiv:1304.6727]

Recent related work

- Blankenburg, Ellis, Isidori, Phys. Lett. B712, 386 (2012)
- Bhattacharyya, Leser, Pas, Phys. Rev D86, 036009 (2012)
- Harnik, Kopp, Zupan, JHEP 1303, 026 (2013)
- Davidson, Verdier, Phys. Rev. D80, 111701 (2012)
- Celis, Cirigliano, Passemar, Phys. Rev. D89, 013008 (2014)
- Falkowski, Straub, Vicente, JHEP 1405, 092 (2014)
- Delaunay et al., Phys. Rev. D89, 033014 (2014)
- Gorbahn, Haisch, JHEP 1406, 033 (2014)
- Kagan *et al.*, arXiv:1406.1722
- Crivellin, D'Ambrosio, Heeck, arXiv: 1501.00993

Natural Flavor Conservation (NFC)

- A solution to the 2HDM flavor puzzle
- NFC \equiv Each fermion sector (U, D, E) couples to a single Higgs doublet
- Type II: $\overline{Q}Y^U U \phi_2 + \overline{Q}Y^D D \phi_1 + \overline{L}Y^E E \phi_1$
- Y^F diagonal in the F mass basis
- $Y^F \propto M_F$
- No Higgs-mediated FCNC at tree level

Minimal Flavor Violation (MFV)

- A solution to the NP flavor puzzle
- SM: When $Y^F = 0 \Longrightarrow$ A large global symmetry $SU(3)_Q \times SU(3)_U \times SU(3)_D \times SU(3)_L \times SU(3)_E$
- MFV \equiv The only NP breaking of the $SU(3)^5$ symmetry: $Y^U(3, \bar{3}, 0, 0, 0), \ Y^D(3, 0, \bar{3}, 0, 0), \ Y^E(0, 0, 0, 3, \bar{3})$
- Example: Gauge mediated supersymmetry breaking
- FV suppressed by small fermion masses and CKM angles

The Froggatt-Nielsen mechanism (FN)

- A solution to both the SM and the NP flavor puzzles
- A $U(1)_H$ symmetry broken by a small spurion $\epsilon_H(-1) \ll 1$
- Different generations carry different H-charges
- Selection rules suppress FV parameters by powers of ϵ_H Example: $Y_{12}^U = \mathcal{O}(1) \times \epsilon_H^{H(\bar{Q}_1) + H(U_2) + H(\phi)}$
- Can solve also the ν flavor puzzle

Leptonic observables

Observable
$$(\ell = e, \mu)$$
 SM
 $R_{\tau^+\tau^-}$ 1
 $X_{\ell\ell} = \frac{\mathrm{BR}(h \to \ell^+ \ell^-)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$ $(m_\ell/m_\tau)^2$
 $X_{\ell\tau} = \frac{\mathrm{BR}(h \to \ell^\pm \tau^\mp)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$ 0

• What can we learn from $R_{\tau\tau}$, $X_{\ell\ell}$, $X_{\tau\ell}$?

Leptonic observables

Observable
$$(\ell = e, \mu)$$
 SM
 $R_{\tau^+\tau^-}$ 1
 $X_{\ell\ell} = \frac{\text{BR}(h \to \ell^+ \ell^-)}{\text{BR}(h \to \tau^+ \tau^-)}$ $(m_\ell/m_\tau)^2$
 $X_{\ell\tau} = \frac{\text{BR}(h \to \ell^\pm \tau^\mp)}{\text{BR}(h \to \tau^+ \tau^-)}$ 0

- What can we learn from $R_{\tau\tau}$, $X_{\ell\ell}$, $X_{\tau\ell}$?
- ATLAS/CMS:

$$-R_{\tau\tau} = 1.04 \pm 0.23$$

- $X_{\mu\mu} < 15(m_{\mu}/m_{\tau})^2 \sim 0.05, \quad X_{ee} < 8 \times 10^5 (m_e/m_{\tau})^2 \sim 0.07$
- $BR_{\tau\mu} = 0.009 \pm 0.004 \implies X_{\mu\tau} = 0.14 \pm 0.06 < 0.3$

Flavor models

- 2HDM with Type II NFC
 - Universal correction to the diagonal couplings
- 1HDM with MFV
 - Non-universal correction to the diagonal couplings
- 1HDM with FN
 - Non-universal correction to the diagonal couplings +
 Off-diagonal couplings

Higgs Physics = new flavor arena

Model	$Y_\tau^2/(2m_\tau^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu\tau}^2/Y_{\tau}^2$
\mathbf{SM}	1	1	0
NFC	$(V_{h\ell}v/v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Higgs Physics = new flavor arena

Model	$Y_\tau^2/(2m_\tau^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu\tau}^2/Y_{\tau}^2$
\mathbf{SM}	1	1	0
NFC	$(V_{h\ell}v/v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Measuring Y_{ij} can probe flavor models

Avital Dery, Aielet Efrati, Gudrun Hiller, YN, Yotam Soreq, Vasja Susič, PRD 90, 115022 (2014)

[arXiv:1408.1371]

Model building

The question

• Experimentally, the best direct probes of FC Higgs couplings:

$$-t \rightarrow hq \ (q=c,u)$$

$$-h \rightarrow \tau \ell \ (\ell = \mu, e)$$

• Are there viable and natural flavor models that have

$$-Y_{qt} \sim 0.17$$
 but $Y_{uc} \lesssim 10^{-4}$?

$$-Y_{\ell\tau} \sim 0.02 \text{ but } Y_{e\mu} \lesssim 10^{-6}?$$

Model building

$Y_{tq}, Y_{\tau\ell}$ in flavor models

- NFC
 - Impossible $(Y_{qt} = Y_{\ell\tau} = 0)$
- MQFV
 - Impossible $(Y_{ct} \leq V_{cb} \sim 0.04)$
- MLFV
 - Possible only with full seesaw (Y^E, Y^N, M^N) and accidental cancelations
- FN:
 - Possible only with supersymmetry and holomorphic zeros

Model building

Summary: $Y_{tq}, Y_{\tau\ell}$ in flavor models

- The upper bounds on Y_{tc} and $Y_{\tau\mu}$ can be saturated within viable and natural flavor models
- The models are not generic and need to be carefully selected
- If $t \to hq$ or $h \to \tau \ell$ is observed in experiments, it will challenge present explanations of the flavor puzzles

Shikma Bressler, Avital Dery, Aielet Efrati, PRD 90 (2014) 015025 [1405.3229]

 $h \to \tau^{\pm} \ell^{\mp}$

The background

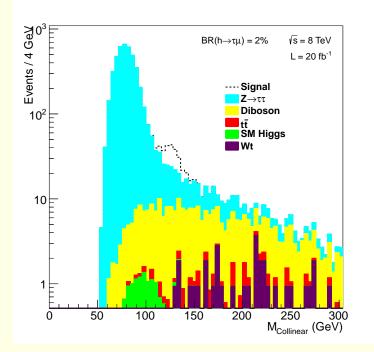
- Consider the following signal processes:
 - $h \rightarrow \tau^{\pm} \mu^{\mp}$ followed by $\tau^{\pm} \rightarrow e^{\pm} \nu \bar{\nu}$
 - $h \rightarrow \tau^{\pm} e^{\mp}$ followed by $\tau^{\pm} \rightarrow \mu^{\pm} \nu \bar{\nu}$
- SM background:

(i)
$$Z \to \tau^+ \tau^- \to \mu^\pm e^\mp E_T$$

- Problem: signal lies in transitional region between (i) and (ii)
- Extrapolations from outside Higgs window inadequate; Monte-Carlo uncertain
- But: SM processes approximately symmetric under $e \leftrightarrow \mu$; BR $(h \rightarrow \tau \mu) \neq$ BR $(h \rightarrow \tau e)$ breaks this symmetry

 $h \to \tau^{\pm} \ell^{\mp}$

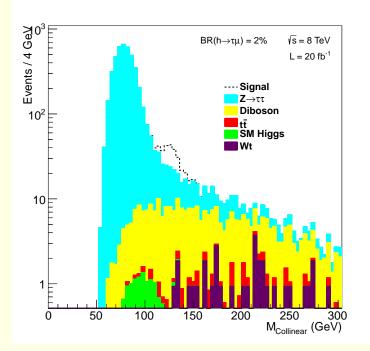
The method

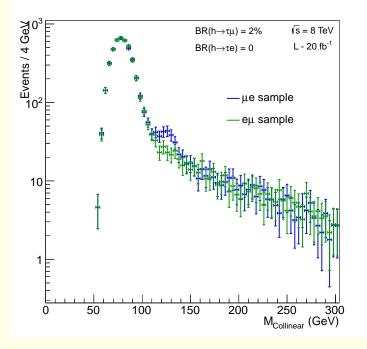

- Divide the data to two mutually exclusive samples:
 - $-\mu e$ data sample: $p_T^{\mu} > p_T^e$
 - $-e\mu$ data sample: $p_T^e > p_T^\mu$
- SM background: divided equally between the two samples
- $h \to \tau^{\pm} \mu^{\mp}$ events are mostly in the μe sample; $h \to \tau^{\pm} e^{\mp}$ events are mostly in the $e\mu$ sample
- Subtracting $(\mu e) (e\mu)$ provides a measurement of $BR_{\tau\mu} BR_{\tau e}$

 $h \to \tau^{\pm} \ell^{\mp}$

The method

- Divide the data to two mutually exclusive samples:
 - $-\mu e$ data sample: $p_T^{\mu} > p_T^e$
 - $-e\mu$ data sample: $p_T^e > p_T^\mu$
- SM background: divided equally between the two samples
- $h \to \tau^{\pm} \mu^{\mp}$ events are mostly in the μe sample; $h \to \tau^{\pm} e^{\mp}$ events are mostly in the $e\mu$ sample
- Subtracting $(\mu e) (e\mu)$ provides a measurement of $BR_{\tau\mu} BR_{\tau e}$
- The bounds from $\mu \to e\gamma$ imply that $BR_{\tau\mu}$ and $BR_{\tau e}$ cannot be simultaneously close to the respective upper bounds
- For $BR_{\tau e} = 0$, the $e\mu$ sample provides the SM background

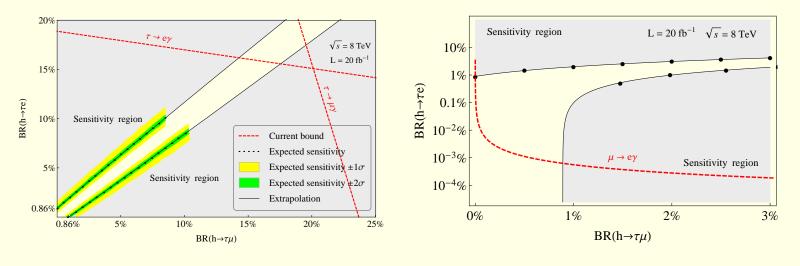

Data driven background estimate


Simulated background+signal

 $h \to \tau^\pm \ell^\mp$

Data driven background estimate

Simulated background+signal [Bressler, Dery, Efrati, 1405.4545]



 μe and $e\mu$ distributions

 $h \to \tau^{\pm} \ell^{\mp}$

 $h \to \tau^\pm \ell^\mp$

The sensitivity

1405.4545

• With one rate negligibly small, and with 20 fb⁻¹ of collected data: 3σ sensitivity for discovering BR_{$\tau\mu$} (or BR_{τe}) $\simeq 0.9\%$.

h Physics = New Flavor Arena

Measure:

- Third generation couplings: Y_t , Y_b , Y_{τ}
- Second generation couplings: Y_c, Y_s, Y_{μ}
- Flavor violating couplings: $Y_{\mu\tau}$, $Y_{e\tau}$, Y_{ct} , Y_{ut}

Test:

- MFV
- FN
- NFC
- • •