RARE HIGGS DECAYS

JURE ZUPAN U. OF CINCINNATI

HIGGS - A WINDOW TO NEW PHYSICS

- the 125GeV scalar resembles the SM Higgs at the ~O(few10%) level for measured couplings
- Higgs decay width small
 - in the SM Γ_H =4.1 MeV
- this enhances sensitivity to NP in decays

• exotic decays, i.e., not present in the SM

2

- modified Br for the SM channels
 - J. Zupan Rare Higgs Decays

EXOTIC DECAYS

- the Higgs could decay to completely new sector Falkowski, Ruderman, Volansky, JZ, 1002.2952
 - many signatures, model dependent
 - *h→inv.*, 4*b*, 2*b* 2*τ*, ...
- an example: dark photon from kinetic mixing

see also Falkowski, Vega-Morales, 1405.1095

Curtin et al, 1312.4992

+many refs.

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038
 - J. Zupan Rare Higgs Decays

3

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038
 - J. Zupan Rare Higgs Decays

- the final state is $h \rightarrow 4l$
- could use pseudo-observables for general searches Gonzalez-Alonso, Greljo, Isidori, Marzocca, 1412.6038
 - J. Zupan Rare Higgs Decays

FOCUS OF THIS TALK

- focus on two-body rare decays of the Higgs to SM particles
- many couplings very small or zero in the SM
 - no flavor violating couplings to quarks

4

- couplings to the first two generation quarks
- no CP violating couplings
- can be used to search for the NP

CPV AND FV HIGGS COUPLINGS TO SM FERMIONS

• if SM an EFT, the Yukawas get corrected by higher dim. ops

$$\mathcal{L}_{SM} = -\left[\lambda_{ij}(\bar{f}_L^i f_R^j)H + h.c.\right]$$

$$\Delta \mathcal{L}_Y = -\frac{\lambda'_{ij}}{\Lambda^2} (\bar{f}^i_L f^j_R) H(H^{\dagger} H) + h.c. + \cdots$$

decouples mass terms from yukawas

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$

- can lead to flavor violating Higgs decays
- can lead to CPV Higgs decays
- different models lead to different patterns of flavor diagonal and flavor violating Yukawas

5

J. Zupan Rare Higgs Decays

SUMMARY OF MODELS

 an example: higgs couplings to 2nd&3rd gen. charged leptons

> adapted from Dery, Efrati, Hochberg, Nir, 1302.3229 and extended

Model	$\hat{\mu}_{ au au}$	$(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})/(m_{\mu}^2/m_{ au}^2)$	$\hat{\mu}_{\mu au}/\hat{\mu}_{ au au}$
SM	1	1	0
NFC	$(V_{h\ell}^*v/v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
${ m MFV}$	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4/\Lambda^4)$
GL	9	25/9	${\cal O}(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})$
$\mathrm{RS}(i)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(ar{Y}^2 v^2/m_{KK}^2)\sqrt{m_{ au}/m_{\mu}}$
RS(ii)	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(\bar{Y}^2 v^2/m_{KK}^2)$
PGB (1 rep.)	$1 - v^2/f^2$	1	0

6

FLAVOR VIOLATING HIGGS COUPLINGS

A GENERAL BENCHMARK

- what is a reasonable aim for precision on Y_{ij} ?
 - if off-diagonals are large ⇒ spectrum in general not hierarchical
 - no tuning, if

$$|Y_{\tau\mu}Y_{\mu\tau}| \lesssim \frac{m_{\mu}m_{\tau}}{v^2}$$

Cheng, Sher, 1987

• in concrete models it will be typically further suppressed parametrically

8

see e.g, Dery, Efrati, Nir, Soreq, Susic, 1408.1371; Dery, Efrati, Hochberg, Nir, 1302.3229; Arhrib, Cheng, Kong, 1208.4669 ZPW2015, Jan 7 2015, Zurich

J. Zupan Rare Higgs Decays

 $h \rightarrow \tau \mu$

Harnik, Kopp, JZ, 1209.1397

 $h \rightarrow \tau e \text{ and } h \rightarrow \mu e$

J. Zupan Rare Higgs Decays

10

$h \rightarrow \tau \mu$ from CMS

CMS-HIG-14-005

• hint of a signal in $h \rightarrow \tau \mu$?

11

J. Zupan Rare Higgs Decays

NEW PHYSICS INTERPRETATION

see also talk by A. Greljo at the LHC results forum, Oct 2014

- if real, what type of NP?
- if $h \rightarrow \tau \mu$ due to 1-loop correction
 - extra charged particles necessary
 - $\tau \rightarrow \mu \gamma$ typically too large
- $h \rightarrow \tau \mu$ possible to explain if extra scalar doublet
 - 2HDM of type III
 - slightly above Cheng-Sher naturalness criterion

Sierra, Vicente, 1409.7690

12

bound on $h \rightarrow \tau \mu$

- bound $Br(h \rightarrow \tau \mu) < 1.57\%$ corresponds to $\sqrt{Y_{\tau\mu}^2 + Y_{\mu\tau}^2} < 3.6 \times 10^{-3}$
 - about 2.0x below the SM $Y_{\tau\tau}$
- this corresponds to $Br(\tau \rightarrow \mu\gamma) < 2.2 \times 10^{-9}$, $Br(\tau \rightarrow \mu\mu\mu) < 4.2 \times 10^{-12}$

• assumes SM Y_{tt} and $Y_{\tau\tau}$

- both $Br(h \rightarrow \tau \mu) \sim Y_{\tau \mu}^{2} + Y_{\mu \tau}^{2}$ and $Br(\tau \rightarrow \mu \gamma, \mu \mu \mu) \sim Y_{\tau \mu}^{2} + Y_{\mu \tau}^{2}$
 - increasing luminosity at LHC or Belle2 helps in the same way (neglecting systematics)

 $\tau \rightarrow \mu \pi \pi$

- hadronic tau decays $\tau \rightarrow \mu \pi + \pi , \tau \rightarrow \mu \pi 0 \pi 0$
 - sensitive to both $Y_{\tau\mu'\mu\tau}$ and light quark yukawas $Y_{u,d,s}$
 - $Y_{u,d,s}$ poorly bounded ~ $O(Y_b)$
- for $Y_{u,d,s}$ at their SM values then

 $Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12}$ $Br(\tau \to e\pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e\pi^0 \pi^0) < 6.9 \times 10^{-11}$

• for $Y_{u,d,s}$ at their present upper bounds

 $\begin{array}{l} Br(\tau \rightarrow \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \rightarrow \mu \pi^0 \pi^0) < 1.5 \times 10^{-8} \\ Br(\tau \rightarrow e \pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \rightarrow e \pi^0 \pi^0) < 2.1 \times 10^{-7} \end{array}$

- Br(τ→μπ+π-) below present exp. limit, if discovered would (among other things) imply upper limit on Y_{u.d}
- similarly pseudoscalar Higgses can be bounded from $\tau \rightarrow \mu \pi(\eta, \eta'), \tau \rightarrow e \pi(\eta, \eta')$

14

• can saturate present experimental limits

J. Zupan Rare Higgs Decays

reinterpreting Celis, Cirigliano, Passemar, 1309.3564; see also Petrov, Zhuridov, 1308.6561

QUARK COUPLINGS

- constraints from
 - *D*, *B*, *B*_s, *K* oscillations
 - bounds on Y_{uc} , Y_{uc} , Y_{db} , Y_{bd} , Y_{sb} , Y_{bs} , Y_{sd} , Y_{ds}
 - strong constraints

- O(0.1)-O(0.01) of Cheng-Sher ansatz
- improvements on these couplings will come from exp&theory improvements in meson mixing

15

QUARK C

- constraints from
 - *D*, *B*, *B*_s,*K* oscillations
 - bounds on Y_{uc} , Y_{uc} , Y_{db} , Y_{bd} , Y_{sb} , Y_{bs} , Y_{sd} , Y_{ds}
 - strong constraints
 - O(0.1)-O(0.01) of Cheng

Technique	Coupling	Constraint
D0	$ Y_{uc} ^2, Y_{cu} ^2$	$< 5.0 \times 10^{-9}$
D° oscillations [48]	$ Y_{uc}Y_{cu} $	$<7.5\times10^{-10}$
<i>μ</i> 0	$ Y_{db} ^2, Y_{bd} ^2$	$<2.3\times10^{-8}$
B_d^* oscillations [48]	$\left Y_{db}Y_{bd} ight $	$< 3.3 \times 10^{-9}$
\mathcal{P}^{0} assillations [49]	$ Y_{sb} ^2, Y_{bs} ^2$	$< 1.8 \times 10^{-6}$
B_s^* oscillations [48]	$\left Y_{sb}Y_{bs} ight $	$<2.5\times10^{-7}$
	${\rm Re}(Y^2_{ds}),{\rm Re}(Y^2_{sd})$	$[-5.9 \dots 5.6] \times 10^{-10}$
K ⁰ accillations [49]	$\mathrm{Im}(Y^2_{ds}),\mathrm{Im}(Y^2_{sd})$	$[-2.9 \dots 1.6] imes 10^{-12}$
K [*] oscillations [48]	$\operatorname{Re}(Y_{ds}^*Y_{sd})$	$[-5.6\dots 5.6]\times 10^{-11}$
	$\operatorname{Im}(Y_{ds}^*Y_{sd})$	$[-1.4\dots 2.8]\times 10^{-13}$
ain als ton ano dustica [40]	$\sqrt{ Y_{tc}^2 + Y_{ct} ^2}$	< 3.7
single-top production [49]	$\sqrt{ Y_{tu}^2 + Y_{ut} ^2}$	< 1.6
t > b.([50]	$\sqrt{ Y_{tc}^2 + Y_{ct} ^2}$	<0.10
$t \rightarrow n j [50]$	$\sqrt{ Y_{tu}^2 + Y_{ut} ^2}$	<0.10
	$ Y_{ut}Y_{ct} , Y_{tu}Y_{tc} $	$<7.6\times10^{-3}$
D^0 oscillations [48]	$ Y_{tu}Y_{ct} , Y_{ut}Y_{tc} $	$<2.2\times10^{-3}$
	$ Y_{ut}Y_{tu}Y_{ct}Y_{tc} ^{1/2}$	$< 0.9 \times 10^{-3}$
neutron EDM [37]	$\operatorname{Im}(Y_{ut}Y_{tu})$	$<4.4\times10^{-8}$

 improvements on these couplings will come from exp&theory improvements in meson mixing

CPV IN HIGGS COUPLINGS

CPV HIGGS COUPLINGS

- couplings of Higgs to other SM fields can be CPV
- CPV for Higgs couplings to gauge bosons from on shell production
 F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J. Shu, JZ, 1312.2955
 - e.g., $h \rightarrow \gamma \gamma$ potentially from Bethe-Heitler photon conversion, or from $h \rightarrow \gamma \gamma \rightarrow 4l$ (this also CPV in $h \rightarrow ZZ$) Chen, Roni Harnik, Roberto Vega-Morales, 1404.1336
 - CPV in $h \rightarrow gg$ from h+2j production Delaunay, Perez, de Sandes, Skiba, 1308.4930
 - CPV in $h \rightarrow WW$ from hW associated production
- focus on CP violating Higgs couplings to fermions Brod, Haisch, JZ, 1310.1385
 - the notation

$$\mathcal{L} \supset -rac{y_f}{\sqrt{2}} \left(\kappa_f \, ar{f} f + i ilde{\kappa}_f \, ar{f} \gamma_5 f
ight) h
ight)$$

• can probe CPV couplings to 3^{rd} generation, so $f=t,b,\tau$

J. Zupan Rare Higgs Decays

HIGGS-TOP CPV COUPLING

- the constraint vanishes, if the Higgs does not couple to electrons
- if it only couples to the 3rd gen. still a constraint from neutron EDM
 - relevant in the future (at a permit level), now ~O(1) allowed

ON SHELL SEARCHES

Ellis, Hwang, Sakurai, Takeuchi, 1312.5736 Harnik, Martin, Okui, Primulando, 1308.1094

CPV couplings *h̄t* and *h̄τ* can be searched for on-shell

Galanti, Giammanco, Grossman, Kats, Stamou, JZ, to appear

- CPV hbb very hard to probe on shell
 - in principles possible through Λ_b
 polarization in the jet
 - however requires large statistics
 - off-shell thus probably the only probe

CPV COUPLING TO b quark

- the EDM constraints on CPV Higgs coupling to *b* quark are weaker than the LHC data
 Brod, Haisch, JZ, 1310.1385
 - this can change in the future
 - EDMs scale linearly with $\tilde{\kappa}_b$

b quark

oupling to b quark Brod, Haisch, JZ, 1310.1385

• EDMs scale linearly with $\tilde{\kappa}_b$

b quark

oupling to *b* quark Brod, Haisch, JZ, 1310.1385

• EDMs scale linearly with $\tilde{\kappa}_b$

HIGGS COUPLINGS TO LIGHT FERMIONS

BOUNDS ON LIGHT QUARK YUKAWAS

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

- the higgs couplings to light quarks assumed to be negligible in the global fits (as in the SM)
- varying $\kappa_{u_i} \kappa_{d_i} \kappa_s$
 - total width modified
 - sublead.: $gg \rightarrow h, h \rightarrow \gamma \gamma$ modified, $u\bar{u} \rightarrow h, d\bar{d} \rightarrow h, s\bar{s} \rightarrow h$ prod.
- varying only one at the time (95%CL, and normalized to $y_{b,SM}$)

 $|\bar{\kappa}_u| < 0.98, \quad |\bar{\kappa}_d| < 0.93, \quad |\bar{\kappa}_s| < 0.70$

varying all of the higgs couplings

$$|\bar{\kappa}_u| < 1.3, \quad |\bar{\kappa}_d| < 1.4, \quad |\bar{\kappa}_s| < 1.4|$$

• for FV Yukawas (varying only one at the time)

 $|\bar{\kappa}_{qq'}| < 0.6(1)$ for $q, q' \in u, d, s, c, b$ and $q \neq q'$

• from FCNCs stronger (model dep.) constr, e.g., $|\bar{\kappa}_{bs}| < 8 \cdot 10^{-2}$

Harnik, Kopp, JZ, 1209.1397; see also Blankenburg, Ellis, Isidori, 1202.5704; Goertz, 1406.0102

J. Zupan Rare Higgs Decays

PROBING LIGHT YUKAWAS?

- the problem with light quark Yukawas is that they are very small
- in low energy processes this means that the Higgs exchange is a subdominant contribution
- if no FV then Higgs decays are the only way
 - statistics will always be a problem to reach the SM
 - a nontrivial challenge is even to find a channel where measurement at least in principle is possible

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

COUPLINGS TO LIGHT QUARKS

• similar analysis for $h \rightarrow \rho \gamma$, $h \rightarrow \omega \gamma$

$$\begin{split} &\frac{Br_{h\to\phi\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[\left(3.0 \pm 0.13 \right) \kappa_{\gamma} - 0.78 \bar{\kappa}_{s} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}}, \\ &\frac{Br_{h\to\rho\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right] \cdot 10^{-5}}{0.57 \bar{\kappa}_{b}^{2}}, \\ &\frac{Br_{h\to\omega\gamma}}{Br_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.6 \pm 0.17) \kappa_{\gamma} - 0.59 \bar{\kappa}_{u} - 0.29 \bar{\kappa}_{d} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}}, \end{split}$$

- interference with the indirect term essential
- direct (SM) amplitude only $\Rightarrow Br \sim O(10^{-11})$
- indirect bound (varying all $\bar{\kappa}_{i}, \kappa_{i}$)

 $|\bar{\kappa}_u| < 1.29, \quad |\bar{\kappa}_d| < 1.42, \quad |\bar{\kappa}_s| < 1.39$

• similar idea also for $h-c\bar{c}$ from $h\rightarrow J/\Psi\gamma$ Bodwin, Petriello, Stoynev, Velasco, 1306.5770

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

FUTURE EXPERIMENTAL PROSPECTS

- focus on $h \rightarrow \phi \gamma$, use **Pythia 8.1**
 - main decay modes: $\phi \rightarrow K^+ K^- (49\%), K_L K_S (34\%), \pi^+ \pi^- \pi^\circ (15\%)$
 - for $pp \rightarrow h \rightarrow \phi \gamma$ at 14TeV LHC in 70 to 75% cases the kaons/pions and the prompt photon have $|\eta| < 2.4$

Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722

- within the minimal fiducial volume of the ATLAS and CMS experiments
- adopt the geometrical acceptance factor Ag = 0.75
 - do not include other efficiency or trigger factors

one detector

CONCLUSIONS

- Higgs is a unique probe of new physics
- have discussed modified Higgs couplings
 - $h \rightarrow \tau \mu$, $h \rightarrow \tau e$ being probed at the LHC
 - strong constraints on CPV couplings from EDMs
 - some potential to probe light quark Yukawas

BACKUP SLIDES