Beyond and Below the Standard Model: Light Exotic New Physics

Brian Batell CERN

Zurich Phenomenology Workshop 2015 January 7, 2015

History lesson - 1930s:

- Back then, the "Standard Model" was photon, electron, nucleons
- Beta decay: $n \to p + e^-$

Continuous spectrum!

Pauli proposes a radical solution - the neutrino!

$$n \rightarrow p + e^- + \bar{\nu}$$

- Perfect example of a "hidden sector"
 - neutrino is electrically neutral (QED gauge singlet)
 - very weakly interacting and light
 - interacts with "Standard Model" through "portal" -

$$(\bar{p}\gamma^{\mu}n)(\bar{e}\gamma_{\mu}\nu)$$

Today, 2014 - Where are we?

- Higgs!
- Triumph of the Standard Model!

- Still, many reasons to believe there is new physics
- Theoretical: naturalness (Higgs, CC), flavor, Strong CP, Unification, Gravity ...
- Empirical: Dark Matter, Neutrino Oscillations, Baryon Asymmetry
- Unfortunately, there are no guarantees of discovery
- All searches for new physics are now fishing expeditions!

Where is the new physics?

Light, Exotic, and Motivated!

Lensing, rotation curves, Dark Matter structure, CMB... Right Handed Neutrinos Neutrino oscillations Strong CP Axion Gravitino Supersymmetry SUSY hidden sectors

• • •

The scale of new physics

Theoretical hints (naturalness) - unambiguously points towards new scale

Empirical hints - no firm prediction for the new physics scale!

We must search High and Low for New Physics!

Portals - an EFT approach

LHN

Neutrino portal

$$(\mu S + \lambda S^2)H^{\dagger}H$$

Higgs Portal

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

Vector Portal

- Only three renormalizable portals can be generated at a high scale
- Respect approximate symmetries of the Standard Model
 - Flavor, Parity, CP allows for relatively large couplings to be viable

Portals - an EFT approach

LHN

Neutrino portal

$$(\mu S + \lambda S^2)H^{\dagger}H$$

Higgs Portal

Focus on vector portal in this talk

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

Vector Portal

- Only three renormalizable portals can be generated at a high scale
- Respect approximate symmetries of the Standard Model
 - Flavor, Parity, CP allows for relatively large couplings to be viable

Vector Portal

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

Holdom

Mixing parameter can be generated radiatively at one or more loops; expected size ~ 10⁻³ or smaller

If dark U(I) is broken visible matter picks up a milli-dark charge.

$$\mathcal{L} \supset \kappa V_{\mu} [-c_w J_{EM}^{\mu} + s_w (1 - m_Z^2/m_V^2)^{-1} J_Z^{\mu}].$$

Mass can be generated through dark Higgs or Stueckelberg mechanism

Goodsell et al

In SUSY theory - mass scale tied to the weak scale as

 $m_V \sim \sqrt{\kappa} \, m_Z$

- Suggests light, (sub-)GeV scale dark photons

Arkani-Hamed, Weiner; Cheung et al; Morissey et al;

Can serve as a portal to Dark Matter

Dark photon (or cousins) often motivated by anomalies:

Example: Muon Anomalous Magnetic Moment (~ 3σ)

Dark photon decays

- governed by EM form factor
- significant branching to leptons

Signatures at low-energy e+e- colliders

BB, Pospelov, Ritz; Essig Schuster, Toro; Reece Wang;

Dark photon searches at BaBAR

[BaBAR, PRL 108 (2012)]

Signatures at high intensity fixed target experiments

Bjorken et al;, Andreas et al; and others

- look for a resonance or displaced vertex

- Current/planned experiments (APEX,HPS,MAMI,DarkLight, VEPP-3, MESA...) will cover a lot of new ground!

SHiP experiment (Search for Hidden Particles) http://www.cern.ch/ship

 New Fixed target facility proposed at CERN

400 GeV protons,
 ~10²⁰ protons-on-target

 Powerful capability to search for weakly interacting, long-lived particles that decay visibly

SHiP sensitivity to dark photons

talk by J. Brunner
Ist SHiP collaboration
meeting

Impressive sensitivity at high mass, and small mixing!

Summary of different channels

Generic decay modes	Final states	Models tested
meson and lepton	$\pi l, K l, \rho l, l = (e, \mu, \nu)$	u portal, HNL, SUSY neutralino
two leptons	$e^{+}e^{-}, \mu^{+}\mu^{-}$	V, S and A portals, SUSY s-goldstino
two mesons	$\pi^{+}\pi^{-}, K^{+}K^{-}$	V, S and A portals, SUSY s-goldstino
3 body	$l^+l^-\nu$	HNL, SUSY neutralino

talk by M. Shaposhnikov 2nd SHiP collaboration meeting

SHiP can search for a wide range of signatures probing a variety of portals & models!

(See talk by P. Mermod)

The low energy frontier of the vector portal

Jaeckel, Ringwald, Redondo...

Portals to Dark Matter

Direct Detection

- Enormous progress over past 2 decades
- Probe DM masses above ~ GeV

Direct Detection

- Nuclear recoil too weak $v_{\rm DM} \sim 10^{-3}$
- Can we find a relativistic source of dark matter?

Relativistic Dark Matter Beam!

BB, Pospelov Ritz

- Superior sensitivity for many models with light DM + light mediator
- Provides a strong motivation for intense proton sources, such as SPS at CERN

Production of the Dark Matter beam

Hadron decays

Direct production

Detection via scattering - anomalous neutral currents

$$\chi - e^-$$
 elastic

$$\chi$$
-nucleon elastic

$$\frac{\chi}{\left\{\begin{array}{c} \chi \\ V \end{array}\right\}}$$

deep inelastic

Vector portal DM ("dark force")

[Pospelov, Ritz, Voloshin],

$$\mathcal{L} \supset |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} - \frac{1}{4}(V_{\mu\nu})^{2} + \frac{1}{2}m_{V}^{2}(V_{\mu})^{2} - \frac{\kappa}{2}V_{\mu\nu}F^{\mu\nu} + \dots$$
$$D_{\mu} = \partial_{\mu} - ig_{D}V_{\mu}$$

- Dark photon mediates interaction between DM and SM
- 4 new parameters: $m_\chi, m_V, \kappa, lpha'$ $(V=A', \ \kappa=\epsilon, \ lpha'=lpha_D)$

LSND

Production: $\pi^0 \to \gamma V \to \gamma \chi \bar{\chi}$ Sensitivity to $\chi e \to \chi e$

[Auerbach et al. (LSND Collaboration), '01]

- LAMPF, 800 MeV protons, ~ 10²³ POT
- water / high Z target
- detector: 30m off axis from target, cylindrical,
 170 tons mineral oil

deNiverville, Pospelov, Ritz

SLAC E137

BB, Essig, Surujon

[Bjorken et al., (E137 Collaboration) '88]

- 20 GeV electron beam; 30 C dumped;
- Aluminum target
- Shower calorimeter detector, 400m from dump

Current constraints on vector portal DM

BB, Essig, Surujon

Leptophobic DM

BB, deNiverville, McKeen, Pospelov, Ritz Dobrescu, Frugiuele

- Dark matter couples dominantly to quarks
- Focus on model based on local $U(1)_B$ baryon number symmetry

$$\mathcal{L} = i\bar{\chi}\gamma^{\mu}D_{\mu}\chi - m_{\chi}\bar{\chi}\chi - \frac{1}{4}(V_{B}^{\mu\nu})^{2} + \frac{1}{2}m_{V}^{2}(V_{B}^{\mu})^{2} + \frac{g_{B}}{3}V_{B}^{\mu}\sum_{i}\bar{q}_{i}\gamma_{\mu}q_{i} + \dots$$
$$D^{\mu} = \partial^{\mu} - ig_{B}q_{B}V_{B}^{\mu}$$

- 4 new parameters: $m_\chi, m_V, \alpha_B, q_B$
- U(I)_B is "safe" preserves approximate symmetries of SM (CP, P, flavor)
- Gauge anomalies can be cancelled by new states at the weak scale

Much weaker constraints compared to vector portal DM!

MiniBooNE dedicated beam dump run to search for dark matter

[Dharmapalan et al., (MiniBooNE Collaboration), arXiv:1211.2258]

- Basic idea: direct protons onto beam dump to reduce neutrino flux
- Proposal to the FNAL PAC
- Run approved fall 2013; just finished this September
- 2 E 20 POT collected
- Analysis underway results this year!

Beating down the neutrino background

The signature of dark matter is a neutral current scattering event Very similar to neutrino induced neutral current event!

Focus protons onto the beam dump - charged pions absorbed or stopped!

Neutrino background reduced by factor of ~ 50!

Timing

Dark matter is heavier than neutrinos - arrives at the detector later!

5-10 ns timing resolution

MiniBooNE sensitivity to leptophobic DM

Many promising proposals to probe Sub-GeV Dark Matter

Direct detection via scattering with electrons
 Essig, Mardon, Volansky

- Electron Beam fixed target scattering experiments
 - BDX (Beam Dump eXperiment)

Izaguirre, Krnjaic, Schuster, Toro

- Fixed target missing momentum experiments
 - SPS Proposal P348 http://p-348.web.cern.ch/

Andreas et al. 1312.3309

(See also
Kahn, Thaler
Izaguirre, Krnjaic, Schuster, Toro)

• Neutrino factories, e.g., DAEdULUS Kahn et al.

Outlook

- Strong empirical hints for new physics (Dark Matter, Neutrino mass, Baryon Asymmetry), but we do not know the scale associated with their dynamics - can be light!
- We have a variety of experimental tools at our disposal to search for such new lights states high intensity, high precision, and high energy experiments. We must take full advantage of these resources.
- Portals allow a systematic approach to the study of such states.
- We don't know which principle is the right one in guiding us in our search for new physics. We must look everywhere we can - at, above and below the weak scale. Any discovery will be revolutionary!