

Consistency of global CKM fits

- Tremendous success of the CKM paradigm!
 - All of the measurements agree in a highly profound way

- The quark flavour sector is well described by the CKM mechanism
 - large sources of flavour symmetry breaking are excluded at the TeV scale
 - the flavour structure of NP should be very peculiar

Consistency of global CKM fits

- Tremendous success of the CKM paradigm!
 - All of the measurements agree in a highly profound way

- We are leaving in a strange era
 - on the one hand we have been achieving great success
 - on the other hand, some depression sneaking around as everything looks consistent with what we already knew

Nevertheless...

- The good reasons why we believed that the SM was incomplete are still there
 - hierarchy problem
 - unification of gauge couplings
 - dark matter
 - matter-antimatter asymmetry
 - **—** ...
- By studying CP-violating and flavour-changing processes we can accomplish two fundamental tasks
 - Identify new symmetries (and their breaking) beyond the SM
 - Probe mass scales not accessible directly
- Measurable deviations from the SM, although not large as naively hoped, are still possible
 - need to go to high precision measurements to probe theoretically clean observables

Measurements of UT angles

- Interpretation in terms of CKM matrix elements does not depend on strong theory inputs
 - $-\sigma_{th}(\gamma)$ negligible from tree-level decays
 - Brod and Zupan, JHEP 01 (2014) 051
 - $-\sigma_{th}(\beta)$ small and controllable with data-driven methods
 - Ciuchini et al., PRL 95 (2005) 221804
 - Faller et al., PRD 79 (2009) 014030
 - $\sigma_{th}(\beta_s)$ small and controllable with data-driven methods
 - Faller et al., PRD 79 (2009) 014005
 - $-\sigma_{th}(\alpha) \approx 1^{\circ}$
 - Gronau et al., PRD 60 (1999) 034021
 - Botella et al., PRD 73 (2006) 071501
 - Zupan, Nucl. Phys. Proc. Suppl. 170 (2007) 33

- Measurements can be affected by NP at different levels
 - $-\gamma$ from tree-level is (to a large extent) unaffected
 - $-\beta (\beta_s)$ can be affected in $B_d (B_s)$ mixing
 - $-\alpha$ can be affected both in mixing and decay (loops in penguin diagrams)

Measurements of UT sides and ε_{κ}

- Here theory matters a lot
 - Improvements in lattice QCD are particularly important
 - Can we go below 1% for the relevant hadronic quantities in the next decade?
 - Small effects that are typically neglected have to be considered, e.g. isospin breaking and electromagnetic effects are at the 1% level

Hadronic parameter	L.Lellouch ICHEP 2002 [hep-ph/0211359]	FLAG 2013 [1310.8555]
f ₊ ^{Kπ} (0)	- First Lattice result in 2004 [0.9%]	[0.4%]
₿ _K	[17%]	[1.3%]
f_{Bs}	[13%]	[2%]
f_{Bs}/f_{B}	[6%]	[1.8%]
₿ _{Bs}	[9%]	[5%]
B_{Bs}/B_{B}	[3%]	[10%]
F _{D*} (1)	[3%]	[1.8%]
$B{\to}\pi$	[20%]	[10%]

- Progresses not coming for free
- The LQCD sector needs to be sustained with appropriate funding

Outline

- LHCb detector and luminosity prospects
- CP violation in the interference between B-meson mixing and decay
 - from $b \rightarrow c\bar{c}s$ transitions
 - from $b \rightarrow s\bar{s}s$ transitions
- Semileptonic asymmetries of B⁰ and B_s mesons
- Determination of γ
 - from tree-level decays
 - from charmless two-body decays
- Mixing and CP violation in charm decays
- LHCb Upgrade

The LHCb detector

The LHCb detector

LHCb luminosity prospects

During Run 1

- 7 and 8 TeV collisions
- luminosity levelled at 4·10³² cm⁻²s⁻¹
- software trigger running at 1 MHz after hardware trigger and record 3-5 kHz

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

Note that beauty production cross section is roughly doubled passing from 7 TeV to 14 TeV pp collisions

LHCb upgrade

- running at 2·10³³ cm⁻²s⁻¹
- replace R/O, RICH photodetectors and tracking detectors
- full software trigger, running at 40 MHz and record 20 kHz

Measurement of $sin(2\beta)$

 CP violation due to interference between mixing and decay

$$\mathcal{A}_{J/\psi K_{\rm S}^0}(t) \equiv \frac{\Gamma(\overline{B}^0(t) \to J/\psi K_{\rm S}^0) - \Gamma(B^0(t) \to J/\psi K_{\rm S}^0)}{\Gamma(\overline{B}^0(t) \to J/\psi K_{\rm S}^0) + \Gamma(B^0(t) \to J/\psi K_{\rm S}^0)}$$
$$= S_{J/\psi K_{\rm S}^0} \sin(\Delta m_d t) - C_{J/\psi K_{\rm S}^0} \cos(\Delta m_d t).$$

$$S_{J/\psi K_S^0} = 0.73 \pm 0.07 \,(\text{stat}) \pm 0.04 \,(\text{syst})$$

$$C_{J/\psi K_{\rm S}^0} = 0.03 \pm 0.09 \,({\rm stat}) \pm 0.01 \,({\rm syst})$$

World average: $sin(2\beta)=0.682 \pm 0.019$ Largely dominated by BaBar and Belle

• LHCb result with 3 fb⁻¹ coming soon (competitive precision is expected)

CP violation induced by B_s mixing

• Golden mode $B_s \rightarrow J/\psi \phi$ also proceeds (mostly) via a $b \rightarrow c \overline{c} s$ tree diagram

- $B_s \rightarrow \phi \phi$ is $b \rightarrow s\bar{s}s$ penguin-dominated
 - NP can show up in the mixing and/or in the decay
- P→VV decays
 - Full angular analysis is needed to disentangle CP-even and CP-odd amplitude components

LHCb measurements of φ_s

- $B_s \rightarrow J/\psi K^+K^- (3 \text{ fb}^{-1})$
 - arXiv 1411.3104 $\phi_c = -58 \pm 49 \pm 6 \text{ mrad}$
- B_s \to J/ $\psi \pi^{+} \pi^{-}$ (3 fb⁻¹)
 - Phys. Lett. **B736** (2014) 186 $\phi_{\rm s} = 70 \pm 68 \pm 8 \, \text{mrad}$
- $B_c \rightarrow D_c^+ D_c^- (3 \text{ fb}^{-1})$
 - $\phi_{\rm s} = 20 \pm 170 \pm 20 \, \text{mrad}$

SM $\phi_s = -37.5 \pm 1.5 \text{ mrad (UTfit)}$

Combination of ϕ_s measurements

Combination of ϕ_s measurements

World average: ϕ_s = -15 ± 35 mrad, $\Delta\Gamma_s$ = 0.081 ± 0.007 ps⁻¹

- Present uncertainty is dominated by LHCb
 - LHCb-only average: $\phi_s = -10 \pm 39$ mrad
- Not yet signs of discrepancy with SM expectation

CP violation in $B_s \rightarrow \phi \phi$

- Decay forbidden at tree level in the SM
 - proceeds predominantly via a gluonic b→sss penguin
 - Provides an excellent probe of new heavy particles entering the penguin quantum loops
- Latest LHCb result with full Run 1 data set
 - Phys. Rev. **D90** (2014) 052011 $\phi_s^{\phi\phi}$ = -170 ± 150 ± 30 mrad
- No sign of discrepancy yet, but overall precision comparable to golden b→ccs modes

The D0 anomaly

• Dimuon asymmetry measured by D0 at about 3σ from

the SM

 Very difficult to repeat the same measurement at the LHC

- However it is possible to measure $a_{sl}(B^0)$ and $a_{sl}(B_s)$
- LHCb has measured $a_{sl}(B^0)$ with 3 fb⁻¹ [arXiv:1409.8586] a_{sl}^d arXiv:1409.8586] and $a_{sl}(B_s)$ with 1 fb⁻¹ [Phys. Lett. **B728** (2014) 607]
- The measurements agree with the SM, but do not exclude the dimuon result yet

Tree-level determination of γ

- γ is the least known angle of the UT
 - sensitivity comes from the interference between b→u and b→c treelevel transitions
- Two main paths
 - Time-independent, $B^{\pm} \rightarrow DK^{\pm}$, $B^{\pm} \rightarrow D\pi^{\pm}$ and $B^{0} \rightarrow DK^{*0}$ decays
 - $B^+ \to Dh^+, D \to hh$, GLW/ADS Phys. Lett. **B712** (2012) 203
 - $B^+ \to Dh^+, D \to K\pi\pi\pi$, ADS Phys. Lett. **B723** (2013) 44
 - $B^+ \to DK^+, D \to K_s^0 hh, GGSZ$ JHEP **10** (2014) 097
 - $B^+ \to DK^+, D \to K_{\rm S}^0 K \pi, {\rm GLS}$ Phys. Lett. **B733** (2014) 36
 - $B^0 \rightarrow DK^{*0}$, $D \rightarrow hh$, GLW/ADS Phys. Rev. **D90** (2014) 112002
 - Time-dependent, $B_s \rightarrow D_s K$ JHEP **11** (2014) 060
- Possible interplay with charmless B decays
 - Also sensitive to γ , but including penguin diagrams \rightarrow NP could show up, but much more difficult to control theoretically
- Combining several independent decay modes is the key to achieve the ultimate precision

Improvements in γ from tree-level decays over the last decade

A good factor 3 in 10 years, but not yet matching the precision of the indirect determination from CKM fits (~3°)

Experimental status for γ

- Measured by BaBar, Belle and LHCb using ADS/GLW and GGSZ methods
 - LHCb is now starting to dominate the world average
 - still some analyses to be updated to 3 fb⁻¹

Measurements from tree-level decays are assumed to be almost insensitive to NP effects

Standard candle for the SM, crucial to distinguish between genuine SM and BSM in **UT** fits

Direct *CP* asymmetries in $B_{(s)}^{0} \rightarrow K\pi$ decays

Phys. Rev. Lett. 110 (2013) 221601

$$A_{CP} (B^0 \to K\pi) = -0.080 \pm 0.007 \text{(stat)} \pm 0.003 \text{(syst)}$$

Most precise measurement of this quantity to date, 10.5σ from zero

$$A_{CP}\left(B_s^0 \to K\pi\right) = 0.27 \pm 0.04(\text{stat}) \pm 0.01(\text{syst})$$

21

CP violation in $B_s \rightarrow K^+K^-$ and $B^0 \rightarrow \pi^+\pi^-$

γ and ϕ_s from charmless two-body decays

- Determination of γ and ϕ_s using $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow \pi^0\pi^0$, $B^\pm \rightarrow \pi^\pm\pi^0$ and $B_s \rightarrow K^+K^-$
 - approaches described in Phys. Lett. **B459** (1999) 306 and
 JHEP **10** (2012) 029
 - based on use of isospin and U-spin symmetries
 - impact of non-factorisable U-spin breaking effects taken into account
- Results published in Phys. Lett. **B741** (2015) 1

$$\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$$

$$\phi_s = -0.12^{+0.14}_{-0.16} \text{ rad}$$

Up to 50% non-factorizable U-spin breaking effects included

to be updated to 3 fb⁻¹

Charmless three-body decays

Large asymmetries observed in $B^{\pm} \rightarrow K\pi\pi$ and $B^{\pm} \rightarrow \pi\pi\pi...$

...mirrored when compared with $B^{\pm} \rightarrow KKK$ and $B^{\pm} \rightarrow KK\pi$

- Huge *CP* violation seen at low $\pi\pi$ and *KK* mass values, not associated to resonances
- Long-distance $\pi\pi \leftrightarrow KK$ rescattering?

Mixing in charm decays

2.01

2.015

 $M(D^0\pi_s^+)$ [GeV/ c^2]

2.02

2.005

 Measure time-dependent ratio of D⁰ decays "wrong sign" to "right

sign" $R(t) = \frac{N(D^0 \to K^+ \pi^-)}{N(D^0 \to K^- \pi^+)}$

No mixing hypothesis is excluded at the 9.1σ level by LHCb with 1 fb⁻¹

• Results then superseded with 3 fb⁻¹ in Phys. Rev. Lett. **111** (2013) 251801

Searches for CP violation in D⁰ mixing

- "Large" mixing encourages searches in this very important sector
 - A nonzero CPV signal would indicate NP
- Searches done with dedicated observables, such as

$$A_{\Gamma} = \frac{\Gamma(D^0 \to KK) - \Gamma(\overline{D}^0 \to KK)}{\Gamma(D^0 \to KK) + \Gamma(\overline{D}^0 \to KK)}$$

Current precision is 0.05% (LHCb driven)

Phys. Rev. Lett. 112 (2014) 041801

- or by generalising the WS $K\pi$ fit to D^0 and \overline{D}^0
 - Phys. Rev. Lett. **111** (2013) 251801

Searches for direct CP violation in charm

- $\Delta A_{CP} \equiv A_{CP}(KK) A_{CP}(\pi\pi)$
 - robust observable against detector systematics and production asymmetries
- Early LHCb result [Phys. Rev. Lett. 108 (2012) 111602]
 with 0.6 fb⁻¹ triggered great interest

$$\Delta A_{CP} = [-0.82 \pm 0.21(\text{stat}) \pm 0.11(\text{syst})]\%$$

- Also owing to CDF and Belle, a consistent picture was emerging for direct CPV at the 0.5% level
- But LHCb updates later indicated that the effect was reduced
 - $-1 \text{ fb}^{-1} D^* \text{ update [CONF-2013-003]}$
 - $-3 \text{ fb}^{-1} B \rightarrow D^0 \mu X \text{ [JHEP 07 (2014) 041]}$
- Final LHCb D* results from full Run 1 data set coming soon

The LHCb Upgrade

- Main limitation that prevents exploiting higher luminosity with the present detector is the Level-0 (hardware) trigger
 - Level-0 output rate < 1 MHz (readout rate) requires raising thresholds
- To overcome this limitation, LHCb will be upgraded during the 2018-19 shutdown
 - Full software trigger with all sub-detectors readout at 40 MHz
 - Increase operational luminosity to 2·10³³ cm⁻²s⁻¹
 - Tracking detectors and RICH photodetectors also need to be upgraded

- All TDRs approved by CERN research board
- Construction going to start soon

Conclusions

- LHCb has performed spectacularly well in Run 1 confirming so far the robustness of the Standard Model
 - No striking smoking guns of NP
 - Areas where we had discrepancies seem now heading back to the SM
 - But many new results to come, and full impact of Run 1 data is still to be seen
- Big improvements will come in Run 2, and much more are expected with the LHCb Upgrade
 - The standard detector will take data till 2018 and the upgraded detector will start taking data in 2020
- Experimental prospects are excellent
 - Key measurements are still far from being limited by systematic uncertainties
- CP violation at LHCb has large room for improvements!

Where are we heading?

