RECENT PROGRESS IN CHARM PHYSICS

Luca Silvestrini

INFN, Rome

- Introduction
- CP violation in charm mixing
 - present status
 - future prospects
- CP violation in charm decays
 - VIA matrix elements, penguins & $\Delta I=1/2$
- Conclusions

INTRODUCTION

- Charm physics in the SM is almost a twogenerations story:
 - long-distance dominated
 - no CPV
 - ⇒ excellent place to look for CPV NP!
- Charm mixing 2^{nd} only to ϵ_{κ} in NP sensitivity
- We are reaching the point in which the word almost becomes important

D MIXING

- D mixing is described by:
 - Dispersive $D \rightarrow \overline{D}$ amplitude M_{12}
 - SM: long-distance dominated, not calculable
 - NP: short distance, calculable w. lattice
 - Absorptive D \rightarrow D amplitude Γ_{12}
 - SM: long-distance, not calculable
 - NP: negligible
 - Observables: $|M_{12}|$, $|\Gamma_{12}|$, Φ_{12} =arg (Γ_{12}/M_{12})

D-mixing discussion based on Grossman, Kagan, Ligeti, Perez, Petrov & L.S., in preparation

$GIM \Leftrightarrow SU(3) (U-spin)$

Use CKM unitarity

$$V_{cd}V_{ud}^* + V_{cs}V_{us}^* + V_{cb}V_{ub}^* = \lambda_d + \lambda_s + \lambda_b = 0$$

- eliminate λ_d and take λ_s real (all physical results convention independent)
- imaginary parts suppr. by r=Im λ_b/λ_s =6.5 10⁻⁴
- M_{12} , Γ_{12} have the following structure:

$$\lambda_{s}^{2} (f_{dd} + f_{ss} - 2f_{ds}) + 2\lambda_{s}\lambda_{b} (f_{dd} - f_{ds} - f_{db} + f_{sb}) + O(\lambda_{b}^{2})$$

ZPW2015 Zürich

$GIM \Leftrightarrow SU(3) (U-spin)$

• Write long-distance contributions to M_{12} and Γ_{12} in terms of U-spin quantum numbers:

$$\lambda_s^2 (\Delta U=2) + \lambda_s \lambda_b (\Delta U=2 + \Delta U=1) + O(\lambda_b^2)$$
 $\sim \lambda_s^2 \varepsilon^2 + \lambda_s \lambda_b \varepsilon$

• CPV effects at the level of r/s ~2 10^{-3} ~ $1/8^{\circ}$ for "nominal" SU(3) breaking ε ~30%

"REAL SM" APPROXIMATION

- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}

"REAL SM" APPROXIMATION II

• Define $|D_{SL}| = p|D^0| \pm q|D^0|$ and $\delta = (1-|q/p|^2)/$ $(1+|q/p|^2)$. All observables can be written in terms of $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ and δ , with

$$\sqrt{2} \,\Delta m = \operatorname{sign}(\cos \Phi_{12}) \sqrt{4|M_{12}|^2 - |\Gamma_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$

$$\sqrt{2} \,\Delta \Gamma = 2\sqrt{|\Gamma_{12}|^2 - 4|M_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$

$$\delta = \frac{2|M_{12}||\Gamma_{12}|\sin \Phi_{12}}{(\Delta m)^2 + |\Gamma_{12}|^2},$$
(7)

- Notice that $\phi = arg(q/p) = arg(y+i\delta x) argT_{12}$
- $|q/p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP Ciuchini et al; Kagan & Sokoloff

CPV IN MIXING TODAY

latest UTfit average (HFAG very similar):

$$x = (3.6 \pm 1.6) \, 10^{-3}, y = (6.1 \pm 0.6) \, 10^{-3},$$

 $|q/p|-1 = (1.6 \pm 1.8) \, 10^{-2},$
 $\phi = arg(q/p) = (0.45 \pm 0.56)^{\circ}$

CPV IN MIXING TODAY II

The corresponding results on fundamental parameters are

$$|M_{12}|$$
 = $(4 \pm 2)/fs$, $|\Gamma_{12}|$ = $(15 \pm 2)/fs$ and Φ_{12} = $(2 \pm 3)^{\circ}$

IMPLICATIONS ON NP SCALE

	95% upper limit	Lower limit on Λ	
	(GeV^{-2})	(TeV)	
$\operatorname{Im} C_1^D$	$[-0.9, 2.5] \cdot 10^{-14}$	$6.3 \cdot 10^{3}$	
$\operatorname{Im} C_2^D$	$[-2.8, 1.0] \cdot 10^{-15}$	$1.9 \cdot 10^4$	
$\operatorname{Im} C_3^D$	$[-3.0, 8.6] \cdot 10^{-14}$	$3.4 \cdot 10^{3}$	
$\operatorname{Im} C_4^D$	$[-2.7, 8.0] \cdot 10^{-16}$	$3.5 \cdot 10^4$	
$\operatorname{Im} C_5^D$	$[-0.4, 1.1] \cdot 10^{-14}$	$9.5 \cdot 10^3$	

$$\frac{\sqrt{\left|\text{Im} \left(\delta_{12}^{u}\right)_{LL,RR}^{2}\right|} \quad \sqrt{\left|\text{Im} \left(\delta_{12}^{u}\right)_{LR,RL}^{2}\right|} \quad \sqrt{\left|\text{Im} \left(\delta_{12}^{u}\right)_{LL=RR}^{2}\right|}$$
0.019
0.0025
0.0011

1 TeV squark & gluino

BEYOND THE "REAL SM"

- Belle II and LHCb upgrade will considerably improve the sensitivity to CPV in charm mixing
- Should critically re-examine the statement of negligible CPV in the SM:
 - Could CPV amplitudes be dynamically enhanced?
 - Is the SU(3)/U-spin argument reliable?

BEYOND THE "REAL SM" II

- Relax the assumption of real $\Gamma_{\!_{12}}$, introduce $\phi_{\!_{\Gamma12}}$ = arg $\Gamma_{\!_{12}}$
- The relation between ϕ , x, y and δ is modified as follows:
 - $-\phi = arg(q/p) = arg(y+i\delta x) \phi_{\Gamma 12}$
- Can we extract $\phi_{\Gamma 12}$ from experimental data?
- How large can $\phi_{\Gamma 12}$ be in the SM?

BEYOND THE "REAL SM" III

• In principle, if decay amplitudes are not real, they affect the extraction of ϕ :

$$\phi \rightarrow \phi + \delta \phi_f$$
, with $\delta \phi_f = \arg(\overline{A}_f/A_f)$ (f CP eig.)

- for CA and DCS decays, $\delta \phi_f$ negligible
- for SCS decays, $\delta\phi_f = A_{CP}^{dir}(D \rightarrow f) \cot \delta_f$ (δ_f strong phase difference, expected O(1))
- present data on DCPV imply $\delta \varphi_f \sim 10^{\text{-3}}$

BEYOND THE "REAL SM" IV

- CPV contributions to $\phi_{\Gamma12}$ are enhanced by $1/\epsilon,$ while this is not the case for $\delta\phi_f$
- can go beyond the "real SM" approximation by adding one universal phase $\phi_{\Gamma 12}$ and fitting for ϕ_{12} and $\phi_{\Gamma 12}$ or, equivalently, for ϕ_{M12} and $\phi_{\Gamma 12}$

CHARM CPV @ LHCb UPGRADE

- Expected errors w. LHCb upgrade:
 - δx =1.5 10⁻⁴, δy =10⁻⁴, $\delta |q/p|$ =10⁻², $\delta \phi$ =3° (from $K_s \pi \pi$); δy_{CP} = δA_Γ =4 10⁻⁵ (from K^+K^-)
- Allows to experimentally determine $\phi_{\Gamma 12}$ with a reach on CPV @ the degree level:
 - $-\delta\phi_{M12} = \pm 1^{\circ}$ (17 mrad) and $\delta\phi_{\Gamma12} = \pm 2^{\circ}$ (34 mrad) @ 95% prob.
 - Λ>10⁵ TeV

CHARM CPV @ HI-LUMI

- "Extreme" flavour experiment (LHCb see e.g. talk by G. Punzi @ 1st Future Hadron Collider Workshop
- Naïve extrapolation, scaling LHCb upgrade estimates:
 - δx =1.5 10⁻⁵, δy =10⁻⁵, $\delta |q/p|$ =10⁻³, $\delta \varphi$ =.3° (from $K_s \pi \pi$); δy_{CP} = δA_Γ =4 10⁻⁶ (from K^+K^-)
 - $-\delta\phi_{M12} = \pm 0.1^{\circ}$ (1.7 mrad) and $\delta\phi_{\Gamma12} = \pm 0.2^{\circ}$ (3.4 mrad) @ 95% prob.
 - Λ >3 10⁵ TeV, close to the bound from $\epsilon_{\rm K}$

CAN WE ESTIMATE $\phi_{\Gamma 12}$ IN SM?

- $\Gamma_{12} = \Gamma_{12}^{0} + \delta \Gamma_{12} = \lambda_{s}^{2} (\Delta U = 2) + \lambda_{s} \lambda_{b} (\Delta U = 2 + \Delta U = 1) + O(\lambda_{b}^{2}) \sim \lambda_{s}^{2} \Gamma_{5} + \lambda_{s} \lambda_{b} \Gamma_{3}$
- Γ_5 changes Uspin by two units, arises @ $O(\epsilon^2)$
- Γ_3 changes Uspin by one unit, arises @ $O(\epsilon)$
- Trade $\Gamma_{12}{}^{0}$ for y Γ , get $\phi_{\Gamma 12} \sim \text{Im } \lambda_{s} \lambda_{b} / \text{y} \ \Gamma_{3} / \Gamma \sim 5 \ 10^{-3} \ \Gamma_{3} / \Gamma$

ESTIMATING Γ_3/Γ

- Γ_3 generated by SCS decay amplitudes
- two-body decays account for 75% of hadronic D decays, with PP~VV~AP~PV/3
- use exp data on BR's and DCPV to perform SU(3) analysis and estimate Γ_3 , using e.g. the general parameterization of U-spin amplitudes in SCS decays by Brod, Kagan, Grossman & Zupan

ESTIMATING Γ_3/Γ II

• analysis of U-spin amplitudes suggests that currently $\Gamma_{\rm 3}/\Gamma\sim 1$ is plausible, and also that $\phi_{\Gamma12}/\delta\phi_{\rm f}\sim 4$, as previously argued, yielding

 $\phi_{\Gamma 12} \sim 5 \text{ mrad } (0.3^{\circ})$

and leaving plenty of room for NP

- more data, in particular for PV SCS decays, would allow for a better estimate of $\phi_{\Gamma12}$
- ϕ_{M12} might be estimated via dispersion rel.

ZPW2015 Zürich

CPV IN SCS D DECAYS

• CPV in SCS D decays suppressed by $r=Im \lambda_b/\lambda_s=6.5\ 10^{-4}$. Can it be dynamically enhanced?

Brod, Kagan & Zupan '11; Pirtskhalava & Uttayarat '11; Bhattacharya, Gronau & Rosner '12; Cheng & Chiang '12; Brod, Grossman, Kagan & Zupan '12

• Can anything analogous to the $\Delta I=1/2$ rule take place in SCS charm decays?

Golden & Grinstein, '89

PENGUINS FROM K TO B

• What is the origin of the $\Delta I = 1/2$ rule in K decays? RBC-UKQCD lattice studies suggest a cancellation between connected and disconnected emission contributions to $\Delta I=3/2$ amplitudes, which instead add up in the $\Delta I=1/2$ case. Penguins play a minor role.

ZPW2015 Zürich

- This corresponds to a maximal violation of VIA: the connected contribution has opposite sign in full QCD (cfr. large-N model estimate by Bardeen, Buras & Gérard)
- Is there a connection between the $\Delta I=1/2$ rule and the validity of naïve factorization for emission topologies?

- K physics: maximal deviation from the VIA, large suppression of $\Delta I=3/2$ amplitude
- D physics: sizable deviations from naïve factorization (1/N ~ 0), comparable ΔI =1/2 and ΔI =3/2 amplitudes with large phases
- B physics: factorization holds in the infinite mass limit and gives a good description of data once enhanced corrections taken into account, small phases

VIA VIOLATIONS IN $\Delta F=2$

- Same violation of VIA seen in Δs =2: indeed the K-K and K $\to \pi\pi$ matrix elements are proportional in the chiral limit
- Interesting to check whether the deviation from the VIA decreases for heavier mesons

"Connected"

"Disconnected"

VIA VIOLATIONS IN $\Delta F=2$

	K	D_s	B_s	static limit
R_{VV+AA}^{λ}	-1.90(07)	-0.64(02)	-0.46(06)	-0.38(09)
R^{λ}_{VV-AA}	4.3(2)	0.60(05)	0.12(05)	-0.03(05)
R_{SS-PP}^{λ}	-0.13(03)	-0.11(03)	-0.07(03)	-0.05(03)
R_{SS+PP}^{λ}	-0.27(06)	-0.21(04)	-0.15(03)	-0.12(04)
$R_{SS+PP-TT/2}^{\lambda}$	4.04(16)	1.40(07)	0.81(06)	0.61(06)

Carrasco, Lubicz & L.S.

• R^{λ} is the octect matrix element, which vanishes in the VIA, normalized by the singlet matrix element

BACK TO CPV IN SCS DECAYS

- A consistent picture seems to emerge from lattice studies of $K \rightarrow \pi\pi$ and $\Delta F = 2$:
 - suppression of 3/2 and enhancement of $\frac{1}{2}$ amplitude in K decays due to emission diagrams; no penguin enhancement
 - deviations from VIA less dramatic but sizable in D decays; no reason to expect large penguins
- No compelling arguments for enhanced SM CPV in SCS D decays

ZPW2015 Zürich L. Silvestrini 26

CONCLUSIONS

- Given present experimental errors, SM contributions to CPV in mixing-related observables can be safely neglected, yielding a constrained three-parameter fit $(M_{12}, \Gamma_{12},$ ϕ_{12}) which allows to probe NP at the % level
- future experimental improvements will however go well below the %, reaching a level in which SM CPV contributions might be nonnegligible ZPW2015 ZPJich

L Silvestrini

CONCLUSIONS II

- Given the SU(3) structure of Δc =1 and Δc =2 amplitudes, CPV contributions to Γ_{12} are parametrically enhanced over CPV contributions to decay amplitudes
- Moreover, the latter are already constrained to lie below the future sensitivity in $\varphi,$ and essentially vanish in the SM
- Generalizing the fit introducing $\phi_{\Gamma 12}$ captures dominant SM effects

28

ZPW2015 Zürich L. Silvestrini

CONCLUSIONS III

- Belle II/LHCb upgrade will probe ϕ_{M12} and $\phi_{\Gamma12}$ at the level of 1°, while an "extreme" flavour experiment might reach the 0.1° level
- $\phi_{\Gamma 12}$ can be estimated using fits of SCS decay amplitudes (in particular PV ones)
- at present $\phi_{\Gamma 12}$ at the 0.3° level is plausible, but more data needed to refine this estimate; may also estimate ϕ_{M12} via disp. rel.

CONCLUSIONS IV

- Lattice QCD starts providing a consistent picture of deviations from the VIA in K, D and B physics
- If confirmed by the full computation of ΔI =1/2 rule, would exclude large penguin matrix elements
- Excluding large penguins, SM contributions to CPV in SCS D decays can be kept under control

ZPW2015 Zürich