RECENT PROGRESS IN CHARM PHYSICS

Luca Silvestrini

INFN, Rome

- Introduction
- CP violation in charm mixing
- present status
- future prospects
- CP violation in charm decays
- VIA matrix elements, penguins \& $\Delta I=1 / 2$
- Conclusions

INTRODUCTION

- Charm physics in the SM is almost a twogenerations story:
- long-distance dominated
- no CPV
\Rightarrow excellent place to look for CPV NP!
- Charm mixing $2^{\text {nd }}$ only to ε_{k} in NP sensitivity
- We are reaching the point in which the word almost becomes important

D MIXING

- D mixing is described by:
- Dispersive $D \rightarrow \bar{D}$ amplitude M_{12}
- SM: long-distance dominated, not calculable
- NP: short distance, calculable w. lattice
- Absorptive D \rightarrow D amplitude Γ_{12}
- SM: long-distance, not calculable
- NP: negligible
- Observables: $\left|M_{12}\right|,\left|\Gamma_{12}\right|, \Phi_{12}=\arg \left(\Gamma_{12} / M_{12}\right)$

D-mixing discussion based on Grossman, Kagan, Ligeti, Perez, Petrov \& L.S., in preparation

$G I M \Leftrightarrow S U(3)(U-$ spin $)$

- Use CKM unitarity
$\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{ud}}{ }^{*}+\mathrm{V}_{\mathrm{cs}} \mathrm{V}_{\mathrm{us}}{ }^{*}+\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}{ }^{*}=\lambda_{\mathrm{d}}+\lambda_{\mathrm{s}}+\lambda_{\mathrm{b}}=0$
- eliminate λ_{d} and take λ_{s} real (all physical results convention independent)
- imaginary parts suppr. by $r=\operatorname{Im} \lambda_{b} / \lambda_{s}=6.510^{-4}$
- M_{12}, Γ_{12} have the following structure:

$$
\lambda_{s}^{2}\left(f_{d d}+f_{s s}-2 f_{d s}\right)+2 \lambda_{s} \lambda_{\mathrm{b}}\left(f_{d d}-f_{d s}-f_{d b}+f_{s b}\right)+O\left(\lambda_{\mathrm{b}}{ }^{2}\right)
$$

$G I M \Leftrightarrow S U(3)(U-$ spin $)$

- Write long-distance contributions to M_{12} and Γ_{12} in terms of U-spin quantum numbers:
$\lambda_{s}{ }^{2}(\Delta \mathrm{U}=2)+\lambda_{s} \lambda_{\mathrm{b}}(\Delta \mathrm{U}=2+\Delta \mathrm{U}=1)+O\left(\lambda_{\mathrm{b}}{ }^{2}\right)$ $\sim \lambda_{s}{ }^{2} \varepsilon^{2}+\lambda_{s} \lambda_{b} \varepsilon$
- CPV effects at the level of $r / \varepsilon \sim 210^{-3} \sim 1 / 8^{\circ}$ for "nominal" SU(3) breaking $\varepsilon \sim 30 \%$

"REAL SM" APPROXIMATION

- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}

"REAL SM" APPROXIMATION II

- Define $\left|D_{s, L}\right|=p\left|D^{0}\right| \pm q\left|D^{0}\right|$ and $\delta=\left(1-|q / p|^{2}\right) /$ $\left(1+|q / p|^{2}\right)$. All observables can be written in terms of $x=\Delta m / \Gamma, y=\Delta \Gamma / 2 \Gamma$ and δ, with

$$
\sqrt{2} \Delta m=\operatorname{sign}\left(\cos \Phi_{12}\right) \sqrt{4\left|M_{12}\right|^{2}-\left|\Gamma_{12}\right|^{2}+\sqrt{\left(4\left|M_{12}\right|^{2}+\left|\Gamma_{12}\right|^{2}\right)^{2}-16\left|M_{12}\right|^{2}\left|\Gamma_{12}\right|^{2} \sin ^{2} \Phi_{12}}}
$$

$$
\sqrt{2} \Delta \Gamma=2 \sqrt{\left|\Gamma_{12}\right|^{2}-4\left|M_{12}\right|^{2}+\sqrt{\left(4\left|M_{12}\right|^{2}+\left|\Gamma_{12}\right|^{2}\right)^{2}-16\left|M_{12}\right|^{2}\left|\Gamma_{12}\right|^{2} \sin ^{2} \Phi_{12}}}
$$

$$
\begin{equation*}
\delta=\frac{2\left|M_{12}\right|\left|\Gamma_{12}\right| \sin \Phi_{12}}{(\Delta m)^{2}+\left|\Gamma_{19}\right|^{2}} \tag{7}
\end{equation*}
$$

- Notice that $\phi=\arg (q / p)=\arg (y+i \delta x)-\arg I_{12}$
- $|q / p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP

CPV IN MIXING TODAY

- latest UTfit average (HFAG very similar):

$$
\begin{aligned}
& x=(3.6 \pm 1.6) 10^{-3}, y=(6.1 \pm 0.6) 10^{-3}, \\
& |q / p|-1=(1.6 \pm 1.8) 10^{-2}, \\
& \phi=\arg (q / p)=(0.45 \pm 0.56)^{\circ}
\end{aligned}
$$

$\phi\left[{ }^{\circ}\right]$

CPV IN MIXING TODAY II

- The corresponding results on fundamental parameters are

$$
\begin{aligned}
& \left|M_{12}\right|=(4 \pm 2) / f s,\left|\Gamma_{12}\right|=(15 \pm 2) / f s \\
& \text { and } \Phi_{12}=(2 \pm 3)^{\circ}
\end{aligned}
$$

IMPLICATIONS ON NP SCALE

	95% upper limit $\left(\mathrm{GeV}^{-2}\right)$	Lower limit on Λ (TeV)
$\operatorname{Im} C_{1}^{D}$	$[-0.9,2.5] \cdot 10^{-14}$	$6.3 \cdot 10^{3}$
$\operatorname{Im} C_{2}^{D}$	$[-2.8,1.0] \cdot 10^{-15}$	$1.9 \cdot 10^{4}$
$\operatorname{Im} C_{3}^{D}$	$[-3.0,8.6] \cdot 10^{-14}$	$3.4 \cdot 10^{3}$
$\operatorname{Im} C_{4}^{D}$	$[-2.7,8.0] \cdot 10^{-16}$	$3.5 \cdot 10^{4}$
$\operatorname{Im} C_{5}^{D}$	$[-0.4,1.1] \cdot 10^{-14}$	$9.5 \cdot 10^{3}$

$\frac{\sqrt{\left|\operatorname{Im}\left(\delta_{12}^{u}\right)_{L L, R R}^{2}\right|} \sqrt{\left|\operatorname{Im}\left(\delta_{12}^{u}\right)_{L R, R L}^{2}\right|} \sqrt{\left|\operatorname{Im}\left(\delta_{12}^{u}\right)_{L L=R R}^{2}\right|}}{0.019}$

1 TeV squark \& gluino

BEYOND THE "REAL SM"

- Belle II and LHCb upgrade will considerably improve the sensitivity to CPV in charm mixing
- Should critically re-examine the statement of negligible CPV in the SM:
- Could CPV amplitudes be dynamically enhanced?
- Is the SU(3)/U-spin argument reliable?

BEYOND THE "REAL SM" II

- Relax the assumption of real Γ_{12}, introduce $\phi_{\Gamma 12}=\arg \Gamma_{12}$
- The relation between ϕ, x, y and δ is modified as follows:

$$
-\phi=\arg (q / p)=\arg (y+i \delta x)-\phi_{\Gamma 12}
$$

- Can we extract $\phi_{\Gamma 12}$ from experimental data?
- How large can $\phi_{r 12}$ be in the $S M$?

BEYOND THE "REAL SM" III

- In principle, if decay amplitudes are not real, they affect the extraction of ϕ :

$$
\phi \rightarrow \phi+\delta \phi_{f} \text { with } \delta \phi_{f}=\arg \left(\bar{A}_{f} / A_{f}\right) \quad(f C P \text { eig.) }
$$

- for CA and DCS decays, $\delta \phi_{f}$ negligible
- for SCS decays, $\delta \phi_{f}=A_{C P}{ }^{\text {dir }}(D \rightarrow f) \cot \delta_{f}$ (δ_{f} strong phase difference, expected $O(1)$)
- present data on DCPV imply $\delta \phi_{f} \sim 10^{-3}$

BEYOND THE "REAL SM" IV

- CPV contributions to $\phi_{\Gamma 12}$ are enhanced by $1 / \varepsilon$, while this is not the case for $\delta \phi_{f}$
- can go beyond the "real SM" approximation by adding one universal phase $\phi_{\Gamma 12}$ and fitting
for ϕ_{12} and $\phi_{\Gamma 12}$ or, equivalently, for $\phi_{M 12}$ and $\phi_{\Gamma 12}$

CHARM CPV @ LHCb UPGRADE

- Expected errors w. LHCb upgrade:

$$
\begin{aligned}
& -\delta x=1.510^{-4}, \delta y=10^{-4}, \delta|q / p|=10^{-2}, \delta \phi=3^{\circ} \text { (from } \\
& \left.K_{s} \pi \pi\right) ; \delta y_{C p}=\delta A_{\mathrm{r}}=410^{-5}\left(\text { from } \mathrm{K}^{+} \mathrm{K}^{-}\right. \text {) }
\end{aligned}
$$

- Allows to experimentally determine $\phi_{\Gamma 12}$ with a reach on CPV @ the degree level:

$$
\begin{aligned}
& -\delta \phi_{\text {M12 }}= \pm 1^{\circ}(17 \mathrm{mrad}) \text { and } \\
& \delta \phi_{\mathrm{r} 12}= \pm 2^{\circ}(34 \mathrm{mrad}) @ 95 \% \text { prob. } \\
& -\Lambda>10^{5} \mathrm{TeV}
\end{aligned}
$$

CHARM CPV @ HI-LUMI

- "Extreme" flavour experiment (LHCb upgrade $L \times 100$ see e.g. takk by G. Punzi ©

1st Future Hadron Collider Workshop

- Naïve extrapolation, scaling LHCb upgrade estimates:

$$
\begin{aligned}
& -\delta x=1.510^{-5}, \delta y=10^{-5}, \delta|q / p|=10^{-3}, \delta \phi=.3^{\circ} \text { (from } \\
& \left.K_{S} \pi \pi\right) ; \delta y_{C P}=\delta A_{\Gamma}=410^{-6}\left(\text { from } K^{+} K^{-}\right) \\
& - \\
& \delta \phi_{M 12}= \pm 0.1^{\circ}(1.7 \mathrm{mrad}) \text { and } \delta \phi_{\Gamma 12}= \pm 0.2^{\circ} \\
& \\
& \\
& (3.4 \mathrm{mrad}) @ 95 \% \text { prob. } \\
& -\Lambda>310^{5} \mathrm{TeV}, \text { close to the bound from } \varepsilon_{\mathrm{K}}
\end{aligned}
$$

CAN WE ESTIMATE $\phi_{\Gamma 12}$ IN SM?

- $\Gamma_{12}=\Gamma_{12}{ }^{0}+\delta \Gamma_{12}=\lambda_{s}^{2}(\Delta U=2)+\lambda_{s} \lambda_{b}(\Delta U=2+$ $\Delta U=1)+O\left(\lambda_{b}{ }^{2}\right) \sim \lambda_{s}{ }^{2} \Gamma_{5}+\lambda_{s} \lambda_{b} \Gamma_{3}$
- Γ_{5} changes Uspin by two units, arises @ $O\left(\varepsilon^{2}\right)$
- Γ_{3} changes Uspin by one unit, arises @ $O(\varepsilon)$
- Trade $\Gamma_{12}{ }^{0}$ for $y \Gamma$, get
$\phi_{\Gamma 12} \sim \operatorname{Im} \lambda_{s} \lambda_{b} / y \Gamma_{3} / \Gamma \sim 510^{-3} \Gamma_{3} / \Gamma$

ESTIMATING Γ_{3} / Γ

- Γ_{3} generated by SCS decay amplitudes
- two-body decays account for 75% of hadronic D decays, with PP~VV~AP~PV/3
- use exp data on BR's and DCPV to perform $\operatorname{SU}(3)$ analysis and estimate Γ_{3}, using e.g. the general parameterization of U-spin amplitudes in SCS decays by Brod, Kagan, Grossman \& Zupan

ESTIMATING Γ_{3} / Γ II

- analysis of U-spin amplitudes suggests that currently $\Gamma_{3} / \Gamma \sim 1$ is plausible, and also that $\phi_{\Gamma 12} / \delta \phi_{f} \sim 4$, as previously argued, yielding

$$
\phi_{\Gamma 12} \sim 5 \mathrm{mrad}\left(0.3^{\circ}\right)
$$

and leaving plenty of room for NP

- more data, in particular for PV SCS decays, would allow for a better estimate of $\phi_{\text {T12 }}$
- $\phi_{\text {M12 }}$ might be estimated via dispersion rel.

CPV IN SCS D DECAYS

- CPV in SCS D decays suppressed by $r=\operatorname{Im} \lambda_{b} / \lambda_{s}=6.510^{-4}$. Can it be dynamically enhanced?

Brod, Kagan \& Zupan '11; Pirtskhalava \& Uttayarat '11; Bhattacharya, Gronau \& Rosner '12; Cheng \& Chiang '12; Brod, Grossman, Kagan \& Zupan '12

- Can anything analogous to the $\Delta \mathrm{I}=1 / 2$ rule take place in SCS charm decays?

Golden \& Grinstein, '89

PENGUINS FROM K TO B

- What is the origin of the $\Delta I=1 / 2$ rule in K decays? RBC-UKQCD lattice studies suggest a cancellation between connected and disconnected emission contributions to $\Delta \mathrm{I}=3 / 2$ amplitudes, which instead add up in the $\Delta I=1 / 2$ case. Penguins play a minor role.

(a)"Connected"

(b) "Disconnected"
- This corresponds to a maximal violation of VIA: the connected contribution has opposite sign in full QCD (cfr. large-N model estimate by Bardeen, Buras \& Gérard)
- Is there a connection between the $\Delta I=1 / 2$ rule and the validity of naïve factorization for emission topologies?

(a) "Connected"

(b) "Disconnected"
- K physics: maximal deviation from the VIA, large suppression of $\Delta \mathrm{I}=3 / 2$ amplitude
- D physics: sizable deviations from naïve factorization ($1 / \mathrm{N} \sim 0$), comparable $\Delta \mathrm{I}=1 / 2$ and $\Delta I=3 / 2$ amplitudes with large phases
- B physics: factorization holds in the infinite mass limit and gives a good description of data once enhanced corrections taken into account, small phases

VIA VIOLATIONS IN $\Delta F=2$

- Same violation of VIA seen in $\Delta s=2$: indeed the $K-K$ and $K \rightarrow \pi \pi$ matrix elements are proportional in the chiral limit
- Interesting to check whether the deviation from the VIA decreases for heavier mesons

(a) "Connected"

(b) "Disconnected"

VIA VIOLATIONS IN $\Delta \mathrm{F}=2$

	K	D_{s}	B_{s}	static limit
$R_{V V+A A}^{\lambda}$	$-1.90(07)$	$-0.64(02)$	$-0.46(06)$	$-0.38(09)$
$R_{V V-A A}^{\lambda}$	$4.3(2)$	$0.60(05)$	$0.12(05)$	$-0.03(05)$
$R_{S S-P P}^{\lambda}$	$-0.13(03)$	$-0.11(03)$	$-0.07(03)$	$-0.05(03)$
$R_{S S+P P}^{\lambda}$	$-0.27(06)$	$-0.21(04)$	$-0.15(03)$	$-0.12(04)$
$R_{S S+P P-T T / 2}^{\lambda}$	$4.04(16)$	$1.40(07)$	$0.81(06)$	$0.61(06)$

Carrasco, Lubicz \& L.S.

- R^{λ} is the octect matrix element, which vanishes in the VIA, normalized by the singlet matrix element

BACK TO CPV IN SCS DECAYS

- A consistent picture seems to emerge from lattice studies of $\mathrm{K} \rightarrow \pi \pi$ and $\Delta \mathrm{F}=2$:
- suppression of $3 / 2$ and enhancement of $\frac{1}{2}$ amplitude in K decays due to emission diagrams; no penguin enhancement
- deviations from VIA less dramatic but sizable in D decays; no reason to expect large penguins
- No compelling arguments for enhanced SM CPV in SCS D decays

CONCLUSIONS

- Given present experimental errors, SM contributions to CPV in mixing-related observables can be safely neglected, yielding a constrained three-parameter fit $\left(M_{12}, \Gamma_{12}\right.$, ϕ_{12}) which allows to probe NP at the \% level
- future experimental improvements will however go well below the \%, reaching a level in which SM CPV contributions might be nonnegligible

CONCLUSIONS II

- Given the $S U(3)$ structure of $\Delta c=1$ and $\Delta c=2$ amplitudes, CPV contributions to Γ_{12} are parametrically enhanced over CPV contributions to decay amplitudes
- Moreover, the latter are already constrained to lie below the future sensitivity in ϕ, and essentially vanish in the SM
- Generalizing the fit introducing $\phi_{\Gamma 12}$ captures dominant SM effects

CONCLUSIONS III

- Belle II/LHCb upgrade will probe $\phi_{M 12}$ and $\phi_{\Gamma 12}$ at the level of 1°, while an "extreme" flavour experiment might reach the 0.1° level
- $\phi_{\text {r12 }}$ can be estimated using fits of SCS decay amplitudes (in particular PV ones)
- at present $\phi_{\Gamma 12}$ at the 0.3° level is plausible, but more data needed to refine this estimate; may also estimate $\phi_{M 12}$ via disp. rel.

CONCLUSIONS IV

- Lattice QCD starts providing a consistent picture of deviations from the VIA in K, D and B physics
- If confirmed by the full computation of $\Delta I=1 / 2$ rule, would exclude large penguin matrix elements
- Excluding large penguins, SM contributions to CPV in SCS D decays can be kept under control

