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INTRODUCTION
● Charm physics in the SM is almost a two-

generations story:
– long-distance dominated
– no CPV

 excellent place to look for CPV NP!
● Charm mixing 2nd only to K in NP sensitivity

● We are reaching the point in which the word 
almost becomes important
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D MIXING
● D mixing is described by: 

– Dispersive DD amplitude M12 

● SM: long-distance dominated, not calculable
● NP: short distance, calculable w. lattice

– Absorptive DD amplitude 12 
● SM: long-distance, not calculable
● NP: negligible

– Observables: |M12|, |12|,12=arg(12/M12)

_

_

D-mixing discussion based on Grossman, Kagan, Ligeti, Perez, Petrov & L.S., in preparation
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GIM  SU(3) (U-spin)
● Use CKM unitarity 

VcdVud
* + VcsVus

* + VcbVub
* = d + s + b = 0 

● eliminate d and take s real (all physical 
results convention independent)

● imaginary parts suppr. by r=Im b/s=6.5 10-4

● M12, 12 have the following structure:

s
2 (fdd+fss–2fds) + 2sb (fdd-fds-fdb+fsb) +O(b

2)
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GIM  SU(3) (U-spin)

● Write long-distance contributions to M12 and 
12 in terms of U-spin quantum numbers:

s
2 (U=2) + sb (U=2 + U=1) + O(b

2)         
~ s

2 2 + sb

● CPV effects at the level of r/ ~2 10-3 ~ 1/8° 
for “nominal” SU(3) breaking ~30%
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“REAL SM” APPROXIMATION
● Given present experimental errors, it is 

perfectly adequate to assume that SM 
contributions to both M12 and 12 are real

● all decay amplitudes relevant for the mixing 
analysis can also be taken real

● NP could generate a nonvanishing phase for 
M12
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“REAL SM” APPROXIMATION II

●  Define |DS,L|=p|D0|±q|D0| and =(1-|q/p|2)/
(1+|q/p|2). All observables can be written in 
terms of x=m/, y=/2andwith 

Ciuchini et al; Kagan & Sokoloff 

● Notice that =arg(q/p)=arg(y+ix) - arg12 
● |q/p|≠1  ≠0 clear signals of NP
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CPV IN MIXING TODAY
● latest UTfit average (HFAG very similar):

x = (3.6 ± 1.6) 10-3, y = (6.1 ± 0.6) 10-3,          
|q/p|-1 = (1.6 ± 1.8) 10-2, 
=arg(q/p)=(0.45±0.56)°  
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CPV IN MIXING TODAY II
● The corresponding results on fundamental 

parameters are
|M12| = (4 ± 2)/fs, |12| = (15 ± 2)/fs          
and 12 = (2 ± 3)°   
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IMPLICATIONS ON NP SCALE

Carrasco et al.

1 TeV squark & gluino
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BEYOND THE “REAL SM”
● Belle II and LHCb upgrade will considerably 

improve the sensitivity to CPV in charm 
mixing

● Should critically re-examine the statement 
of negligible CPV in the SM:

– Could CPV amplitudes be dynamically 
enhanced?

– Is the SU(3)/U-spin argument reliable?
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BEYOND THE “REAL SM” II

● Relax the assumption of real 12, introduce 
12 = arg  

● The relation between , x, y and  is modified 
as follows:

– = arg(q/p) = arg(y+ix) – 12

● Can we extract 12 from experimental data?

● How large can 12 be in the SM?
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BEYOND THE “REAL SM” III
● In principle, if decay amplitudes are not real, 

they affect the extraction of :

 f, with f = arg(Af/Af)   (f CP eig.)

● for CA and DCS decays, f negligible

● for SCS decays, f  = ACP
dir (D f) cot f       

(f strong phase difference, expected O(1))

● present data on DCPV imply f   10-3

_
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BEYOND THE “REAL SM” IV

● CPV contributions to 12 are enhanced by 1/, 
while this is not the case for f

● can go beyond the “real SM” approximation 
by adding one universal phase 12 and fitting 
for and 12 or, equivalently, for M12and 
12
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● Expected errors w. LHCb upgrade:
– x=1.5 10-4, y=10-4, |q/p|=10-2, =3° (from 

KsyCP=A=4 10-5 (from K+K-)

● Allows to experimentally determine 12 with 
a reach on CPV @ the degree level:

– M12 = ± 1° (17 mrad) and                         
12 = ± 2° (34 mrad) @ 95% prob.

– >105 TeV

CHARM CPV @ LHCb UPGRADE
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CHARM CPV @ HI-LUMI
● “Extreme” flavour experiment (LHCb 

upgrade L x 100) 
● Naïve extrapolation, scaling LHCb upgrade 

estimates:
– x=1.5 10-5, y=10-5, |q/p|=10-3, =.3° (from 

KsyCP=A=4 10-6 (from K+K-) 

– M12 = ± 0.1° (1.7 mrad) and 12 = ± 0.2° 
(3.4 mrad) @ 95% prob.

– >3 105 TeV, close to the bound from K

see e.g. talk by G. Punzi @ 
1st Future Hadron Collider Workshop
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CAN WE ESTIMATE 12 IN SM?

● 12 =12
0 + 12 =s

2 (U=2) + sb (U=2 + 
U=1) + O(b

2) ~ s
2 5 + sb 3

● 5 changes Uspin by two units, arises @ O(2)

● 3 changes Uspin by one unit, arises @ O()

● Trade 12
0 for y, get                                  

12 ~ Im sb/y 3/ ~ 5 10-3 3/
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ESTIMATING 3/

● 3 generated by SCS decay amplitudes

● two-body decays account for 75% of 
hadronic D decays, with PP~VV~AP~PV/3

● use exp data on BR's and DCPV to perform 
SU(3) analysis and estimate 3, using e.g. the 
general parameterization of U-spin 
amplitudes in SCS decays by Brod, Kagan, 
Grossman & Zupan
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ESTIMATING 3/II
● analysis of U-spin amplitudes suggests that 

currently 3/ ~ 1 is plausible, and also that 
12/f ~ 4, as previously argued, yielding

12 ~ 5 mrad (0.3°)

and leaving plenty of room for NP
● more data, in particular for PV SCS decays, 

would allow for a better estimate of 12

● M12 might be estimated via dispersion rel.
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CPV IN SCS D DECAYS
● CPV in SCS D decays suppressed by        

r=Im b/s=6.5 10-4. Can it be dynamically 
enhanced?

● Can anything analogous to the I=1/2 rule 
take place in SCS charm decays?

Golden & Grinstein, '89

Brod, Kagan & Zupan '11; Pirtskhalava & Uttayarat '11;
Bhattacharya, Gronau & Rosner '12; Cheng & Chiang '12; 
Brod, Grossman, Kagan & Zupan '12
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PENGUINS FROM K TO B
● What is the origin of the I=1/2 rule in K 

decays? RBC-UKQCD lattice studies suggest 
a cancellation between connected and 
disconnected emission contributions to 
I=3/2 amplitudes, which instead add up in 
the I=1/2 case. Penguins play a minor role.
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● This corresponds to a maximal violation of 
VIA: the connected contribution has 
opposite sign in full QCD (cfr. large-N model 
estimate by Bardeen, Buras & Gérard)

● Is there a connection between the I=1/2 
rule and the validity of naïve factorization 
for emission topologies?
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● K physics: maximal deviation from the VIA, 
large suppression of I=3/2 amplitude

● D physics: sizable deviations from naïve 
factorization (1/N ~ 0), comparable I=1/2 
and I=3/2 amplitudes with large phases

● B physics: factorization holds in the infinite 
mass limit and gives a good description of 
data once enhanced corrections taken into 
account, small phases
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VIA VIOLATIONS IN F=2
● Same violation of VIA seen in s=2: indeed 

the K-K and K matrix elements are 
proportional in the chiral limit

● Interesting to check whether the deviation 
from the VIA decreases for heavier mesons
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VIA VIOLATIONS IN F=2

Carrasco, Lubicz & L.S.

● R is the octect matrix element, which 
vanishes in the VIA, normalized by the 
singlet matrix element
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BACK TO CPV IN SCS DECAYS
● A consistent picture seems to emerge from 

lattice studies of K and F=2:
– suppression of 3/2 and enhancement of ½ 

amplitude in K decays due to emission 
diagrams; no penguin enhancement

– deviations from VIA less dramatic but 
sizable in D decays; no reason to expect 
large penguins

● No compelling arguments for enhanced SM 
CPV in SCS D decays
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CONCLUSIONS
● Given present experimental errors, SM 

contributions to CPV in mixing-related 
observables can be safely neglected, yielding 
a constrained three-parameter fit (M12, 12, 
12) which allows to probe NP at the % level

● future experimental improvements will 
however go well below the %, reaching a level 
in which SM CPV contributions might be non-
negligible
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CONCLUSIONS II
● Given the SU(3) structure of c=1 and c=2 

amplitudes, CPV contributions to 12 are 
parametrically enhanced over CPV 
contributions to decay amplitudes

● Moreover, the latter are already constrained 
to lie  below the future sensitivity in , and 
essentially vanish in the SM

● Generalizing the fit introducing 12 captures 
dominant SM effects
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CONCLUSIONS III

● Belle II/LHCb upgrade will probe M12 and 12 

at the level of 1°, while an “extreme” flavour 
experiment might reach the 0.1° level

● 12 can be estimated using fits of SCS decay 
amplitudes (in particular PV ones)

● at present 12 at the 0.3° level is plausible, 
but more data needed to refine this 
estimate; may also estimate M12 via disp. rel. 



ZPW2015 Zürich L. Silvestrini 30

CONCLUSIONS IV
● Lattice QCD starts providing a consistent 

picture of deviations from the VIA in K, D 
and B physics

● If confirmed by the full computation of 
I=1/2 rule, would exclude large penguin 
matrix elements

● Excluding large penguins, SM contributions 
to CPV in SCS D decays can be kept under 
control 
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