Precise SM Estimates of $B \rightarrow l^+ l^- Decay Rates$ (& the $b \rightarrow s l^+ l^- Weak Hamiltonian)$

Zurich Phenomenology Workshop: "The flavour of new physics" 8 Jan 15

Based on works with Christoph Bobeth, Emanuel Stamou [PRD 89, 034023 (2014)] Christoph Bobeth, Thomas Hermann, Mikolaj Misiak, Emanuel Stamou and Matthias Steinhauser [PRL 112, 101801 (2014)]

> Martin Gorbahn University of Liverpool

Content

Introduction:

 $B_s \rightarrow \mu^+ \mu^-$ in the Standard Model with QCD at NLO

What type of QED/EW corrections are there?

Status of the \mathcal{L}_{eff} for $b \rightarrow s l^+ l^-$

Theory prediction for $B \rightarrow l^+ l^-$

Rare B Decays

FCNCs which are dominated by top-quark loops:

B decays do not show the CKM suppression of K decays

2 photon pollution is much smaller in $b \rightarrow s l^+ l^- decays$

We can test helicity suppressed modes and more operators

$$\begin{split} Q_7 &= (\bar{b}_L \sigma_{\mu\nu} s_L) F^{\mu\nu}, \ Q_V = (\bar{b}_L \gamma_\mu s_L) (\bar{l} \gamma_\mu l), \ Q_A = (\bar{b}_L \gamma_\mu s_L) (\bar{l} \gamma_\mu \gamma_5 l) \\ &\quad E.g. \ B_{(s)} \rightarrow l^+ \ l^-, \ B \rightarrow K^{(*)} \ l^+ \ l^-, \ B \rightarrow X_s \gamma, \dots \end{split}$$

$B_s \rightarrow \mu^+ \mu^-$ in the Standard Model

B_s is (pseudo)scalar – no photon penguin

$$Q_A = (\bar{b}_L \gamma_\mu s_L)(\bar{l}\gamma_\mu \gamma_5 l)$$

Dominant operator in the SM

helicity suppression $\left(\propto \frac{m_l^2}{M_B^2} \right)$

$$\propto \left|V_{tb}^{*}V_{ts}\right| \simeq \left|1-\lambda^{2}\left(\frac{1}{2}-i\eta-\rho\right)\right|V_{cb}$$

Effective Lagrangian in the SM:

$$\mathcal{L}_{eff} = G_F^2 M_W^2 V_{tb}^* V_{ts} (C_A Q_A + C_S Q_S + C_P Q_P) + h.c.$$

Scalar operators:
$$Q_S = (\bar{b}_R q_L)(\bar{l}l)$$
 $Q_P = (b_R q_L)(l\gamma_5 l)$

Standard Model: C_S & C_P are highly suppressed

$B_s \rightarrow \mu^+ \mu^-$ and New Physics

Contribution of Q_S and Q_P are not helicity suppressed

$B_s \rightarrow \mu^+ \mu^-$ and New Physics

Contribution of Q_S and Q_P are not helicity suppressed

Potentially large coefficients C_S and C_P in 2HDM

$B_s \rightarrow \mu^+ \mu^-$ and New Physics

Contribution of Q_S and Q_P are not helicity suppressed

Potentially large coefficients C_S and C_P in 2HDM

Yet, only if contribution to ΔM_s is suppressed, i.e. type 2 Higgs potential, $\lambda_5 \ll 1$ and type 3 Yukawas

which is the MSSM at tan $\beta \gg 1$, with the Branching Ratio

BR
$$\propto$$
 (tan β)⁶ M_A⁻⁴

Non-zero $\Delta\Gamma_s$ allows for another untagged observable beyond the BR via an effective lifetime measurement. [Bruyn, Fleischer, Knegjens et.al. `12]

Experimental Status

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9} \text{ and}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10},$
CMS & LHCb ArXiv:1411.4413v1

For $B_{(s)} \rightarrow \mu^+ \mu^-$ experiment and theory consistent within present accuracy (2 σ).

Reduce the (theory) uncertainty:

Either $B_{(s)} \rightarrow \mu^+ \mu^-$ will result in a signal of new physics or in a precision test of the standard model.

Either way we will get additional information on C_A , C_S and C_P (+ flipped Operators ...)

Theory Status at NLO

C_S & C_P can be neglected within the Standard Model

```
\begin{split} &C_A(m_t \ / \ M_W)^{NLO} = 1.0113 \ C_A(m_t \ / \ M_W)^{LO} \\ &- for \ QCD \ MS-bar \ m_t = m_t(m_t) \ [\text{Buras, Buchalla; Misiak, Urban `99]} \end{split}
```

For pure QCD determine $<\mu^{+}\mu^{+}|Q_{A}|B_{s}>$ from <0 | $b \gamma^{\mu} \gamma_{5} s |B_{s}> = i p^{\mu} f_{Bs}$ ($f_{Bs}=227.7(4.5)$ MeV [FLAG])

QED & Electroweak were so far only known at LO – this leads to a $\pm 2\%$ & $\pm 7\%$ uncertainty

B_s decay into a 2 lepton final state always helicity suppressed

B_s decay into a 2 lepton final state always helicity suppressed

Soft photon radiation from muons: Theoretical branching ratio is fully inclusive of bremsstrahlung.

There would be sizeable corrections otherwise [Buras, Girrbach, Guadagnoli, Isidori] arXiv:1208.0934.

B_s decay into a 2 lepton final state always helicity suppressed

Soft photon radiation from muons: Theoretical branching ratio is fully inclusive of bremsstrahlung.

There would be sizeable corrections otherwise [Buras, Girrbach, Guadagnoli, Isidori] arXiv:1208.0934.

Direct emission is IR safe (B_s is neutral) and phase space suppressed for invariant mass $m_{\mu\mu}$ close to M_{Bs} . [Aditya, Healey, Petrov] arXiv: 1212.4166

B_s decay into a 2 lepton final state always helicity suppressed

Soft photon radiation from muons: Theoretical branching ratio is fully inclusive of bremsstrahlung.

There would be sizeable corrections otherwise [Buras, Girrbach, Guadagnoli, Isidori] arXiv:1208.0934.

Direct emission is IR safe (B_s is neutral) and phase space suppressed for invariant mass $m_{\mu\mu}$ close to M_{Bs} . [Aditya, Healey, Petrov] arXiv: 1212.4166

Next correction would be $O(\alpha^3)$

Illustration

Consider an experimental signal window for the invariant mass of the muon pair $m_{\mu\mu}$

Illustration

Consider an experimental signal window for the invariant mass of the muon pair $m_{\mu\mu}$

Illustration

Consider an experimental signal window for the invariant mass of the muon pair $m_{\mu\mu}$

Comparing Theory and Experiment

Bremsstrahlung taken into account by the experiment and direct emission treated as background.

The B_s system has a non-zero decay width difference:

→ instantaneous ≠ time integrated branching ratio

[de Bruyn, Fleischer et. al. `12] This correction is precisely known.

Comparing Theory and Experiment

Bremsstrahlung taken into account by the experiment and direct emission treated as background.

- The B_s system has a non-zero decay width difference:
- → instantaneous ≠ time integrated branching ratio [de Bruyn, Fleischer et. al. `12] This correction is precisely known.
- \rightarrow Only electroweak corrections and QED to $C_A(\mu_b)$ are potentially large enhanced by m_{top}/M_W , $1/s_W$, $\alpha_e \log^2(M_W/m_b)$. NNLO is important to remove the scale uncertainty.

Electroweak Corrections

$$\label{eq:consider_loss} \begin{split} & \text{Consider} \, \mathcal{L}_{eff} = \frac{\mathsf{G}_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi \, V_{tb}^* V_{ts}}{\sin^2 \theta_W} \mathsf{C}_{\text{A}} \, \mathsf{Q}_{\text{A}} + \text{h.c.} \end{split}$$

 $G_F \alpha / \sin^2 \theta_W$ does not renormalise under QCD: can be factored out for QCD calculation

Only $G_F \alpha / \sin^2 \theta_W C_A(m_t/M_W)$ invariant under electroweak scheme change

This combination should always give the same result if we use the same input (G_F , α , M_Z , M_t , M_H) up to higher order corrections

Electroweak Scheme Uncertainties

$$\mathcal{L}_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha \pi V_{tb}^* V_{ts}}{\sin^2 \theta_W} C_A(\frac{m_t}{M_W}) Q_A + \text{h.c.}$$

	MS-bar	OS	unct. B _s μ ⁺ μ ⁻	
$\sin \theta_{W}$	0,231	0,223 ± 4 %		
m _t (QCD-MS-bar)	163,5 GeV	164,8 GeV	± 1 %	

These scheme uncertainties should be canceled by the 2-loop electroweak matching corrections!

Electroweak Scheme Uncertainties

$$\mathcal{L}_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha \pi V_{tb}^* V_{ts}}{\sin^2 \theta_W} C_A(\frac{m_t}{M_W}) Q_A + \text{h.c.}$$

	MS-bar	OS	unct. B _s μ ⁺ μ ⁻
$\sin \theta_{W}$	0,231 0,223		$\pm4~\%$
m _t (QCD-MS-bar)	163,5 GeV	164,8 GeV	± 1 %

These scheme uncertainties should be canceled by the 2-loop electroweak matching corrections!

Renormalisation Schemes

- 1. On-shell scheme: Determine M_W including loop corrections from input: results in sin θ_W , m_t and M_W counterterms to $C_A^{(EW)}$.
- 2. MS-bar scheme: Fit g_1 , g_2 , v, λ , m_t from data i.e. from G_F , α , M_Z , M_t , M_H
- 3. Hybrid scheme: Masses on-shell couplings MS-bar
- 4. OS2: Use $G_F^2 M_W^2$ normalisation and on-shell scheme Note: QCD is MS-bar renormalised for all schemes i.e. we use a QCD MS-bar top mass at a fixed scale

There are sizeable shifts and reduction of scale dependence if we go from 1-loop to 2-loop

There are sizeable shifts and reduction of scale dependence if we go from 1-loop to 2-loop

1. We find largest shift in the on-shell scheme,

There are sizeable shifts and reduction of scale dependence if we go from 1-loop to 2-loop

- 1. We find largest shift in the on-shell scheme,
- 2. large scale dependence for the MS-bar scheme

There are sizeable shifts and reduction of scale dependence if we go from 1-loop to 2-loop

- 1. We find largest shift in the on-shell scheme,
- 2. large scale dependence for the MS-bar scheme
- 3. and significant shift for the hybrid scheme at MZ.

There are sizeable shifts and reduction of scale dependence if we go from 1-loop to 2-loop

14

- 1. We find largest shift in the on-shell scheme,
- 2. large scale dependence for the MS-bar scheme
- 3. and significant shift for the hybrid scheme at MZ.
- $4.G_{F^2}M_{W^2}$ normalisation removes `artificial´ scale and parameter dependence

Note: $\alpha(nq=6)$ used for plot

EW corrections reduce modulus of Wilson Coefficient and remove 7 % scale uncertainty in the BR

Status of \mathcal{L}_{eff} for $b \rightarrow s l^+ l^-$

SM Wilson coefficients: Matching at $\mu \approx M_W$

Known at two-loops in QCD for NNLL [Bobeth, Misiak, Urban, '99]

Renormalisation Group Equation $\rightarrow \mu \approx M_W$

 \mathcal{L}_{eff} @ NNLL in QCD and NLL EW for all but C₉ & C₁₀ EW matching [Gambino Haisch`01; Haisch `05, Bobeth, Gambino, MG, Haisch `04, MG, Haisch `05, Huber et. al. `05]

EW corrections for Qv?

EW Uncertainties for LO matching below 5% level

Only the electroweak scheme dependence is plotted, while the effect of operator mixing is switched off

QED RGE for CA

-8.2

-8.4

17

50

NLL running cancels matching scale dependence in Q_A

Study residual scale dependence for the G_{F^2} M_{W^2} normalised results

 $G_F^2 M_W^2 C(\mu_0)$ is scale dependent, while $U(M_Z, \mu_0) G_F^2 M_W^2 C(\mu_0)$ is only residually scale dependent.

 μ_0 [GeV]

300

Wilson Coefficient at mb

The log enhanced QED corrections further reduce the modulus of the Wilson coefficient further.

Varying μ_b in $U(\mu_b, m_t) G_F^2 M_W^2 C(m_t)$ gives a measure of uncertainty regarding the contributions of virtual QED corrections at m_b .

The 0.3% scale dependence is not canceled at the scale μ_b

Remaining QED uncertainty

The remaining 0.3% μ_b scale dependence will only be removed after non-perturbative QED corrections are included.

I.e. QED®QCD Matrix elements of

$$\begin{split} Q_1 &= (\bar{b}\gamma_{\mu} T^{\alpha} q_L)(\bar{q}\gamma_{\mu} T^{\alpha} s_L) \\ Q_2 &= (\bar{b}\gamma_{\mu} q_L)(\bar{q}\gamma_{\mu} s_L) \\ Q_V &= (\bar{b}\gamma_{\mu} s_L)(\bar{l}\gamma_{\mu} l) \end{split}$$

could be considered, but they are $O(\alpha/\pi) \le 0.3\%$ – our error estimate

No relevant lifting of Helicity suppression

Combine with NNLO QCD

Three loop QCD matching, i.e. NNLO, removes scale ambiguities – fixes top mass [Hermann, Misiak, Steinhauser `14]

Theory Prediction $B_s \rightarrow \mu^+ \mu^-$

We find for the time integrated BR @ NNLO & EW

[Bobeth MG, Hermann, Misiak, Steinhauser, Stamou `13]

$$Br_{the} = (3.65 \pm 0.23) \, 10^{-9}$$

$$Br_{exp} = (2.8 + 0.7 - 0.6) 10^{-9}$$

LHCb CMS Combination

$$f_{B_q}$$
 CKM f_H^q f_H^q

f _{Bs} [MeV]	$\tau_{\mathrm{Bs}}[\mathrm{ps}^{\text{-}1}]$	V _{tb} V _{ts}	M _t [GeV]
227.7(45)	1.516(11)	0.0415(13)	173.1(9)

where we have used $V_{cb} = 0.0424(9)$ [Gambino, Schwanda `13]

Remaining $B_{(s)} \rightarrow l^+ l^- decays$

$$Br_{the} (B_{d\mu}) = (1.06 \pm 0.09) \, 10^{-10}$$

$$Br_{exp}(B_{d\mu}) = (3.9^{+1.6}_{-1.4}) 10^{-10}$$

$$\overline{\mathcal{B}}_{se} \times 10^{14} = 8.54 \pm 0.55$$
 $\overline{\mathcal{B}}_{s\tau} \times 10^7 = 7.73 \pm 0.49$
 $\overline{\mathcal{B}}_{de} \times 10^{15} = 2.48 \pm 0.21$
 $\overline{\mathcal{B}}_{d\mu} \times 10^{10} = 1.06 \pm 0.09$
 $\overline{\mathcal{B}}_{d\tau} \times 10^8 = 2.22 \pm 0.19$

	f_{B_q}	CKM	$ au_H^q$	M_t	$lpha_s$	other param.	non- param.	\sum
						< 0.1%		
$\overline{\mathcal{B}}_{d\ell}$	$oxed{4.5\%}$	6.9%	0.5%	1.6%	0.1%	< 0.1%	1.5%	8.5%

Conclusions

7% electroweak scheme ambiguity in B_s → μ + μ - is removed

Largest theory uncertainty (@ NLO EW and NNLO):

- from f_{Bs} (4%), which will be reduced in the future
- rest (<2 %)

But dependence on V_{cb} results in parametric uncertainty, might be reduced in the future or removed by normalising to ΔM_s

Significantly smaller than experimental uncertainty

Only EW corrections to C_V missing to \mathcal{L}_{eff}