

LHCb results on rare *B* decays <u>T. Blake</u> on behalf of the LHCb collaboration

Zurich Phenomenology Workshop, 2015

(日) (四) (王) (王) (王)

æ

- Review of recent LHCb results on rare *b*-hadron decays from Run I of the LHC.
 - 1. Observation of $B_s^0 \rightarrow \mu^+ \mu^-$.
 - 2. Up-down asymmetry and $b \rightarrow s\gamma$ photon polarisation.
 - 3. $B \rightarrow K^{(*)} \mu^+ \mu^-$ branching fractions and angular distribution.
 - 4. Tests of MFV in $b \rightarrow \ell^+ \ell^-$ decays.
- Most results are now based on the full dataset of 3 fb^{-1} of integrated luminosity collected in 2011 (1 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$) and 2012 (2 fb⁻¹ at $\sqrt{s} = 8 \text{ TeV}$).

$B^0_{(s,d)} \rightarrow \mu^+ \mu^-$

$|B^0_s ightarrow\mu^+\mu^-$ and $B^0 ightarrow\mu^+\mu^-$

- B⁰ and B⁰_s → μ⁺μ⁻ are loop, CKM and helicity suppressed in the SM.
- Sensitive probe of models with reduced helicity suppression
 e.g. models with extended Higgs sectors (e.g. MSSM, 2HDM, ...)
- Predicted precisely in the SM:

$$\mathcal{B}(B^0_s
ightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) imes 10^{-9}$$

[Bobeth et al. PRL 112 101801 (2014)]

• $B^0 \rightarrow \mu^+ \mu^-$ decay suppressed by further factor of $|V_{td}/V_{ts}|^2$. An important test of the MFV hypothesis.

Bobeth et al. PRL 112 101801 (2014)

回 と く ヨ と く ヨ と

$B_s^0 \rightarrow \mu^+ \mu^-$ searches

 Background rejection key for rare decay searches → use multivariate classifiers (BDTs) and tight particle identification requirements.

In 3 fb⁻¹ LHCb sees evidence for B⁰_s → μ⁺μ⁻ at 4.0σ with B(B⁰_s → μ⁺μ⁻) = (2.9^{+1.1+0.3}_{-1.0-0.1}) × 10⁻⁹. [PRL 111 (2013) 101805]
 In 20 fb⁻¹ CMS sees evidence for B⁰_s → μ⁺μ⁻ at 4.3σ

with $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$. [PRL 111 (2013) 101804]

æ

・ロト ・回ト ・ヨト ・ヨト

CMS & LHCb $B^0_{(s,d)} \rightarrow \mu^+ \mu^-$ combination

- Simultaneous analysis of the LHCb and CMS datasets, with shared signal parameters and nuisance parameters (where appropriate).
- Data binned in BDT response for both experiments and by barrel and encamp regions for CMS.

CMS & LHCb $B^{0}_{(s,d)} \rightarrow \mu^{+}\mu^{-}$ combination

• Small correlation between B^0 and B_s^0 due to mass resolution.

 \rightarrow Compatible with SM at 1.2 σ (B_s^0) and 2.2 σ (B^0)

< 注 > < 注 > □ 注

Photon polarisation in $b \rightarrow s\gamma$

A⊒ ▶ ∢ ∃

-≣->

Photon polarisation in $b \rightarrow s \gamma$ decays

- B⁰→ K^{*0}γ was the first penguin decay ever observed, by CLEO in 1992 .[PRL 71 (1993) 674]
- We know from the B-factories that $\mathcal{B}(b \rightarrow s\gamma)$ is compatible with SM expectation. What else do we know?
- → In the SM, photons from $b \rightarrow s\gamma$ decays are predominantly left-handed $(C_7/C_7' \sim m_b/m_s)$ due to the charged-current interaction.

Can test C_7/C_7' using:

- → Mixing-induced CP violation [Atwood et al PRL 79 (1997) 185-188],
- $\rightsquigarrow \Lambda_b^0$ baryons [Hiller & Kagan PRD 65 (2002) 074038],

$$\rightsquigarrow B^0 \rightarrow K^{*0} \ell^+ \ell^-$$
 at large recoil.

Photon polarisation from $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

or $B \rightarrow K^{**}\gamma$ decays such as $B^+ \rightarrow K_1(1270)\gamma$. [Gronau & Pirjol PRD 66 (2002) 054008]

- Can infer the photon polarisation from the up-down asymmetry of the photon direction in the $K^+\pi^-\pi^+$ rest-frame. Unpolarised photons would have no asymmetry.
- This is conceptionally similar to the Wu experiment, which first observed parity violation.

- At LHCb we reconstruct $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decays using unconverted photons.
- Observe $\sim 13,000$ signal candidates in 3 fb⁻¹.
- There are a large number of overlapping resonances in the M(K⁺π⁻π⁺) mass spectra. No attempt is made to separate these in the analysis, we simply bin in 4 bins of M(K⁺π⁻π⁺).

Best fit, Unpolarised ($C_7 = C_7'$)

T. Blake Rare B decays

- Combining the 4 bins, observe non-zero photon polarisation at 5.2σ .
- Unfortunately you need to understand the hadronic system to know if the polarisation is predominantly left-handed, as expected in the SM.

ightarrow First observation of photon polarisation in $b
ightarrow s\gamma$ decays

 $b \rightarrow s \ell^+ \ell^-$

branching fractions and asymmetries

æ

イロト イヨト イヨト イヨト

Branching fraction of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- At the LHC we are able to profit from the large $\sigma_{b\overline{b}}$ to reconstruct large samples of exclusive $b \rightarrow s \ell^+ \ell^-$ decays.
- Large increase in yields over B-factories for $\ell^{\pm} = \mu^{\pm}$.

Theory prediction from C. Bobeth et al. [JHEP 07 (2011) 067] (and references therein) • Data set is split into bins of $q^2 = m(\mu^+\mu^-)^2$ to measure $d\mathcal{B}/dq^2$.

[JHEP 08 (2013) 13]

• Normalise signal w.r.t. known $B \rightarrow J/\psi K^{(*)}$ branching fraction (largest source of systematic uncertainty).

Branching fraction of $B \rightarrow K^{(*)} \mu^+ \mu^-$

[JHEP 06 (2014) 133]

 SM predictions based on [JHEP 07 (2011) 067], [JHEP 01 (2012) 107]
 [PRL 111 (2013) 162002], [PRL 112 (2014) 212003].

Э

- There is a general tendency for the measured branching fractions to be smaller than the corresponding SM expectation. This trend is seen at both low and high q².
- Behaviour also seen in $B_s^0 \rightarrow \phi \mu^+ \mu^-$ decays. [JHEP 07 (2013) 084]

[JHEP 06 (2014) 133]

Isospin asymmetries

• In the SM expect the partial widths of rare B^+ and B^0 decays to be almost identical

$$\begin{split} A_{\rm I} &= \frac{\Gamma[B^+ \to K^{(*)+}\mu^+\mu^-] - \Gamma[B^0 \to K^{(*)0}\mu^+\mu^-]}{\Gamma[B^+ \to K^{(*)+}\mu^+\mu^-] + \Gamma[B^0 \to K^{(*)0}\mu^+\mu^-]} \\ A_{\rm I} \text{ is of } \mathcal{O}(1\%) \end{split}$$

- Sensitive to spectator quark differences in the form-factors (exchange and annihilation processes).
- Updated measurements are consistent with zero isospin asymmetry.

御 と く ヨ と く ヨ と … ヨ

• Direct *CP* asymmetries

$$\mathcal{A}_{CP} = \frac{\Gamma[\overline{B} \to \overline{K}^{(*)}\mu^{+}\mu^{-}] - \Gamma[B \to K^{(*)}\mu^{+}\mu^{-}]}{\Gamma[\overline{B} \to \overline{K}^{(*)}\mu^{+}\mu^{-}] + \Gamma[B \to K^{(*)}\mu^{+}\mu^{-}]}$$

expected to be tiny in SM, due to small size of $|V_{ub}V_{us}^*|$.

• Correct the observed asymmetry \mathcal{A}_{RAW} for production (\mathcal{A}_{P}) and detection (\mathcal{A}_{D}) asymmetries using $B \to K^{(*)} J/\psi$.

$$\mathcal{A}_{CP}(B
ightarrow K^{(*)} \mu^+ \mu^-) = \mathcal{A}_{\mathsf{RAW}} - \mathcal{A}_{\mathsf{D}} - \kappa \mathcal{A}_{\mathsf{P}} pprox \mathcal{A}_{\mathsf{RAW}} - \mathcal{A}_{\mathsf{RAW}}^{K^{(*)} J/\psi}$$

- Kinematic differences between $B \rightarrow K^{(*)}J/\psi$ and $B \rightarrow K^{(*)}\mu^+\mu^-$ accounted for by re-weighting.
- Additional cancellation of left-right detector asymmetries by averaging data taken with +ve and -ve magnet polarities.

Direct CP asymmetries

[JHEP 09 (2014) 177]

Results are consistent with A_{CP} = 0, i.e. consistent with SM expectation.

э

Anatomy of the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay

Broad $c\overline{c}$ contributions at high q^2

- $B^+ \rightarrow K^+ \mu^+ \mu^-$ data shows clear resonant structure.
- $\begin{array}{l} \rightarrow \mbox{ First observation of } B^+ \rightarrow \psi(4160) {\cal K}^+ \\ \mbox{ and } \psi(4160) \rightarrow \mu^+ \mu^-. \\ \mbox{ [PRL 111 (2013) 112003]} \end{array}$
 - Beylich, Buchalla & Feldman Theory calculations take cc contributions into account (through an OPE) but not their resonant structure.
 [EPJC 71 (2011) 1635]

- 4 同 ト - 4 三 ト

 $b \rightarrow s \ell^+ \ell^-$

angular distributions

æ

・ロ・ ・ 日・ ・ 田・ ・ 日・

[JHEP 05 (2014) 082]

• Single angle (θ_I) and two parameters describe the decay

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{l}}=\frac{3}{4}(1-F_{\mathrm{H}})(1-\cos^{2}\theta_{l})+\frac{1}{2}F_{\mathrm{H}}+A_{\mathrm{FB}}\cos\theta_{l}$$

- F_H corresponds to the fractional contribution of (pesudo)scalar and tensor operators to Γ.
- Angular distribution is only +ve for $A_{\rm FB} \leq F_{\rm H}/2$ and $F_{\rm H} \geq 0$.
- In SM expect of $A_{\rm FB} pprox 0$ and $F_{\rm H} pprox 0.$

$B^+ \rightarrow K^+ \mu^+ \mu^-$ angular distribution

• Perform two-dimensional likelihood fit to $M(K^+\mu^+\mu^-)$ and $\cos\theta_I$

to determine $A_{\rm FB}$ and $F_{\rm H}$ in bins of q^2

T. Blake

Rare B decays

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular distribution

- Angular distribution of the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay is sensitive to the virtual photon polarisation and new left- and right-handed (axial)vector currents.
- Decay described by three angles $(\theta_{\ell}, \theta_{K}, \phi)$ and the dimuon invariant mass squared, q^2 .
- Build *CP* averaged observables, $S_i = (J_i + \bar{J}_i)/(\Gamma + \bar{\Gamma}),$ or *CP* asymmetries.

• Angular distribution depends on 11 angular terms:

$$\frac{\mathrm{d}^4\Gamma[B^0 \to K^{*0}\mu^+\mu^-]}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\begin{array}{c} J_1^s \sin^2\theta_K + J_1^c \cos^2\theta_K + J_2^s \sin^2\theta_K \cos 2\theta_\ell + J_2^c \cos^2\theta_K \cos 2\theta_\ell + J_2^c \sin^2\theta_K \cos 2\theta_\ell + J_3^c \sin^2\theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + J_8 \sin 2\theta_\ell \sin 2\theta_\ell \sin \phi + J_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \end{array} \right]$$

where the J_i 's are bilinear combinations of seven decay amplitudes $A_{\parallel}^{L,R}$, $A_{\perp}^{L,R}$, $A_{0}^{L,R}$ & A_{t} (L/R for the chirality of the $\mu^{+}\mu^{-}$ system).

• Large number of terms simplified by angular folding, e.g. $\phi \rightarrow \phi + \pi$ if $\phi < 0$ to cancel terms in $\cos \phi$ and $\sin \phi$, or integration.

白 と く ヨ と く ヨ と …

• Angular distribution depends on 11 angular terms:

$$\frac{\mathrm{d}^4\Gamma[B^0 \to K^{*0}\mu^+\mu^-]}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \left[J_1^s \sin^2\theta_K + J_1^c \cos^2\theta_K + J_2^s \sin^2\theta_K \cos 2\theta_\ell + J_2^c \cos^2\theta_K \cos 2\theta_\ell + J_3^c \sin^2\theta_\ell \sin^2\theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin^2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin^2\theta_\ell \sin \phi + J_9 \sin^2\theta_K \sin^2\theta_\ell \sin^$$

where the J_i 's are bilinear combinations of seven decay amplitudes $A_{\parallel}^{L,R}$, $A_{\perp}^{L,R}$, $A_{0}^{L,R}$ & A_{t} (L/R for the chirality of the $\mu^{+}\mu^{-}$ system).

 Large number of terms simplified by angular folding, e.g. φ → φ + π if φ < 0 to cancel terms in cos φ and sin φ, or integration.

(本部) (本語) (本語) (語)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ observables

[JHEP 08 (2013) 131]

ATLAS (prelim.) [ATLAS-CONF-2013-038], CMS 5.2 fb⁻¹ [PLB 727 (2013) 77], LHCb 1 fb⁻¹ [JHEP 08 (2013) 131]

• Can also apply different angular foldings to access other terms.

SM predictions from [Decotes-Genon et al. JHEP 05 (2013) 137]

- Focus on observables where leading form-factor uncertainties cancel, e.g. $P'_{4,5} = S_{4,5}/\sqrt{F_{\rm L}(1-F_{\rm L})}$.
- In 1 fb⁻¹, LHCb observes a local discrepancy of 3.7σ in P'_5 (probability that at least one bin varies by this much is 0.5%).

Lepton Universality

æ

< ≣ >

< **₽** ► < E

Lepton universality?

• Dominant SM processes couple with equal strength to leptons:

$$R_{\rm K}[1,6] = \frac{\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{\Gamma[B^+ \to K^+ e^+ e^-]} = 1 \pm \mathcal{O}(10^{-3}) \ .$$

• Small differences from unity come from Higgs penguin contributions & phasespace.

Conceptually simple, but experimentally challenging (due to bremstrahlung emission from the e^{\pm}).

[PRL 113 (2014) 151601]

$R_{\rm K}$ experimental status

- Take double ratio with $B^+ \rightarrow J/\psi K^+$ decays to cancel possible systematic biases from electron/muon reconstruction.
- Correct for migration of events in and out of $1 < q^2 < 6 \, {\rm GeV}^2/c^4$ using MC and $J\!/\psi$ line-shape in data.
- Have also checked that $R_{
 m K}$ at $q^2 = m_{J/\psi}^2$ is consistent with unity within uncertainties.

In 3 fb⁻¹ LHCb determines $R_{\rm K} = 0.745^{+0.090}_{-0.074}({\rm stat})^{+0.036}_{-0.036}({\rm syst})$ which is consistent with SM expectation at 2.6σ .

 $b \rightarrow d\ell^+ \ell^-$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Observation of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

- In SM, rate of $b \rightarrow d$ process is suppressed by $|V_{td}/V_{ts}|^2$ with respect to $b \rightarrow s$.
- Using 1 fb⁻¹ of integrated luminosity we observed the decay $B^+ \rightarrow \pi^+ \mu^+ \mu^-$.
- Key challenge is controlling combinatorial background and background from $B^+ \rightarrow K^+ \mu^+ \mu^-$ where the K^{\pm} is incorrectly identified as a π^{\pm} .
 - Measured brancing fraction

$$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6 \pm 0.1) \times 10^{-8}$$

Candidates / (20 MeV/c²

LHCb

5500

(a)

5000

is consistent with the SM expectation.

6000

 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

 $B^+ \rightarrow K^+ \mu^+ \mu^-$

 $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ Part. reco.

Combinatorial

M_{π⁺ u⁺ u⁻} [MeV/c²]

6500

New result [arXiv:1412.6433]

• $\pi^+\pi^-$ system consistent with $\rho(770)$ and $f_0(980)$ for the B^0 and B_s^0 , respectively.

• We are starting to build up the necessary ingredients to perform global analyses of $b \rightarrow d$ processes.

Summary

Large *b* and *c* and *t* production cross section makes the LHC an excellent flavour factory Are we starting to see some tension

with the SM in $b \rightarrow s \ell^+ \ell^-$ decays?

Many analyses are still to be updated with the full Run I datasest. Many new results to come for the winter conferences.

Fin

₽.

< □ > < □ > < □ > < □ > < □ > .

Angular observables $J_i(q^2)$ for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

For completeness

$$\begin{split} J_{1}^{s} &= \frac{(2+\beta_{\mu}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right] + \frac{4m_{\mu}^{2}}{q^{2}} \Re(A_{\perp}^{L}A_{\perp}^{R*} + A_{\parallel}^{L}A_{\parallel}^{R*}) \\ J_{1}^{s} &= A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\mu}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2\Re(A_{0}^{L}A_{0}^{R*}) \right] \\ J_{2}^{s} &= \frac{\beta_{\mu}^{2}}{4} \left\{ |A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + (L \to R) \right\} \\ J_{2}^{c} &= -\beta_{\mu}^{2} \left\{ |A_{0}^{L}|^{2} + (L \to R) \right\} \\ J_{3} &= \frac{\beta_{\mu}^{2}}{\sqrt{2}} \left\{ \Re(A_{0}^{L}A_{\parallel}^{L*}) + (L \to R) \right\} \\ J_{4} &= \frac{\beta_{\mu}^{2}}{\sqrt{2}} \left\{ \Re(A_{0}^{L}A_{\perp}^{L*}) - (L \to R) \right\} \\ J_{5} &= \sqrt{2}\beta_{\mu} \left\{ \Re(A_{0}^{L}A_{\perp}^{L*}) - (L \to R) \right\} \\ J_{6} &= 2\beta_{\mu} \left\{ \Re(A_{0}^{L}A_{\parallel}^{L*}) - (L \to R) \right\} \\ J_{8} &= \frac{\beta_{\mu}^{2}}{\sqrt{2}} \left\{ \Im(A_{0}^{L}A_{\parallel}^{L*}) + (L \to R) \right\} \\ J_{9} &= \beta_{\mu}^{2} \left\{ \Im(A_{\parallel}^{L}A_{\perp}^{L}) + (L \to R) \right\} \end{split}$$

・ロト ・回ト ・ヨト

< ≣ >

æ

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay amplitudes

At "leading order"

$$\begin{split} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} + \mathbf{C}_{9}^{\text{reff}}) \mp (\mathbf{C}_{10}^{\text{eff}} + \mathbf{C}_{10}^{\text{reff}}) \right] \frac{\mathbf{V}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} + \mathbf{C}_{7}^{\text{reff}}) \mathbf{T}_{1}(\mathbf{q}^{2}) \bigg\} \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\text{reff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\text{reff}}) \right] \frac{\mathbf{A}_{1}(\mathbf{q}^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\text{reff}}) \mathbf{T}_{2}(\mathbf{q}^{2}) \bigg\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\text{reff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\text{reff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A}_{1}(\mathbf{q}^{2}) - \lambda \frac{\mathbf{A}_{2}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\text{reff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T}_{2}(\mathbf{q}^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T}_{3}(\mathbf{q}^{2}) \right] \bigg\} \\ A_{t} &= \frac{N}{\sqrt{q^{2}}} \sqrt{\lambda} \bigg\{ 2(\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\text{reff}}) + \frac{q^{2}}{m_{\mu}} (\mathbf{C}_{P}^{\text{eff}} - \mathbf{C}_{P}^{\text{reff}}) \bigg\} \mathbf{A}_{0}(\mathbf{q}^{2}) \\ A_{S} &= -2N\sqrt{\lambda} (\mathbf{C}_{S} - \mathbf{C}_{S}) \mathbf{A}_{0}(\mathbf{q}^{2}) \end{split}$$

- *C_i* are Wilson coefficients that we want to measure (they depend on the heavy degrees of freedom).
- A₀, A₁, A₂, T₁, T₂ and V are form-factors (these are effectively nuisance parameters).

$B^0 ightarrow K^{*0} \mu^+ \mu^-$ at LHCb

[JHEP 08 (2013) 131]

Using $1 \, \text{fb}^{-1}$ of integrated luminosity

Comments on angular distribution

- The L & R indices refer to the chirality of the leptonic system.
 - Different due to the axial vector contribution to the amplitudes.
- If $C_{10} = 0$, $A_{0,\parallel,\perp}^L = A_{0,\parallel,\perp}^R$ and the angular distribution reduces to the one for $B^0 \to K^{*0} J/\psi$.
- Zero-crossing point of $A_{\rm FB}$ comes from interplay between the different vector-like contributions.
- In the SM there are 7 different amplitudes that contribute, corresponding to different polarisations states:

 K^* on-shell \rightarrow 3 polarisation states $\epsilon_{K^*}(m = +, -, 0)$ V^* off-shell \rightarrow 4 polarisation states $\epsilon_{K^*}(m = +, -, 0, t)$

• A_t corresponds to a longitudinally polarised K^* and time-like $\mu^+\mu^-$. It's suppressed, so can be neglected.

(本部) (本語) (本語) (語)

- Analysis conceptually similar to that of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay, except can not separate B_s^0 and \overline{B}_s^0 final states.
- Normalise w.r.t. $B_s^0 \rightarrow J/\psi \phi$ to determine $d\mathcal{B}/dq^2$.
- The LHCb results are consistent with those of CDF.

The LHCb detector

æ

		increasing difficulty	
μ^{\pm}	e^{\pm}	$K_{ m S}^0$	$K_{ m L}^0$
π^{\pm}		π^0	
K^{\pm}		γ	
p^{\pm}		$ au^{\pm}$	

- No beam constraint at LHC and large detector occupancy.
 - Signatures with missing energy are difficult to reconstruct.
- Determine branching fractions / asymmetries normalised w.r.t. $B \rightarrow J/\psi K^{(*)}$ decays to cancel possible systematic effects.
 - Improvement in ${\cal B}(B\to J\!/\!\psi\,{\cal K}^{(*)})$ from B-factories would reduce our systemic uncertainties.