$B \rightarrow K^{(*)} \mu^{+} \mu^{-}:$SM versus New Physics

Joaquim Matias
Universitat Autònoma de Barcelona

Zurich 2015

Based on: SDG, JM, J. Virto, Phys. Rev. D88 (2013) 074002
SDG, L. Hofer, JM, J. Virto, JHEP 1412 (2014) 125 , L. Hofer and J.M. to appear'15

January 10, 2015

PLAN of the TALK

- Motivation and theoretical description of $B \rightarrow K^{*}(\rightarrow K \pi) I^{+} I^{-}$at large recoil.
- Analysis of LHCb data on $P_{i}^{(/)}$and model independent understanding of the anomaly.
- Possible explanations of the pattern of deviations and most updated SM predictions.
- New symmetry results and S-wave.
- Conclusions

Many of us thought that the "scalar particle" found at CERN was going to be ALSO \Rightarrow the PORTAL for NEW PHYSICS.

Motivation

Many of us thought that the "scalar particle" found at CERN was going to be ALSO \Rightarrow the PORTAL for NEW PHYSICS.

BUT the "scalar particle" found resembles very much the SM Higgs particle, with SM-like couplings up to the present precision \Rightarrow it will be a long term task...

Many of us thought that the "scalar particle" found at CERN was going to be ALSO \Rightarrow the PORTAL for NEW PHYSICS.

HOWEVER, there are OTHER PORTALS:
RARE B DECAYS (FCNC)

- New Physics same footing as SM
- They allow you to explore higher scales Λ
- A promising golden handle: $B \rightarrow K^{*} \mu^{+} \mu^{-}$
\Rightarrow In this portal the best paradigm to unveil New Physics in Flavour Physics will be an accurate determination of Wilson coefficients. In particular those associated to operators:

$$
\mathcal{O}_{\mathbf{7}}=\frac{e}{16 \pi^{2}} m_{b}\left(\overline{\mathbf{s}} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}, \quad \mathcal{O}_{\mathbf{9}}=\frac{\mathbf{e}^{\mathbf{2}}}{\mathbf{1 6} \pi^{2}}\left(\overline{\mathbf{s}} \gamma_{\mu} \mathbf{P}_{\mathbf{L}} \mathbf{b}\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \quad \mathcal{O}_{\mathbf{1 0}}=\frac{e^{2}}{16 \pi^{2}}\left(\overline{\mathbf{s}} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

and chiral counterparts $\mathcal{O}_{7,9,10}^{\prime}(\mathrm{L} \leftrightarrow \mathrm{R})$

\bullet Wilson Coefficients are tested $C_{i}=C_{i}^{S M}+\mathbf{C}_{\mathrm{i}}^{N P}\left\{\begin{array}{l}\text { different levels of accuracy } \\ \text { allow different ranges of NP }\end{array}\right.$
Wilson coefficients $\left[\mu_{b}=\mathcal{O}\left(m_{b}\right)\right]$

$$
\begin{array}{lcr}
\mathrm{C}_{7}^{\text {eff }}\left(\mu_{\mathbf{b}}\right) & \mathcal{B}\left(\overline{\mathbf{B}} \rightarrow \mathbf{X}_{\mathbf{s}} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, & -0.292 \\
\mathbf{C}_{9}\left(\mu_{\mathbf{b}}\right) & \mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, & 4.075 \\
\mathrm{C}_{10}\left(\mu_{\mathbf{b}}\right) & \mathcal{B}\left(\mathrm{B}_{\mathbf{s}} \rightarrow \mu^{+} \mu^{-}\right), \mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, & -4.308 \\
\mathbf{C}_{7}^{\prime}\left(\mu_{\mathbf{b}}\right) & \mathcal{B}\left(\bar{B} \rightarrow X_{\mathbf{s}} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L} & -0.006 \\
\mathbf{C}_{9}^{\prime}\left(\mu_{\mathbf{b}}\right) & \mathcal{B}\left(B \rightarrow X_{\mathbf{s}} \ell \ell\right), A_{F B}, F_{L} & 0 \\
\left.\mathbf{C}_{10}^{\prime} \mu_{\mathbf{b}}\right) & \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{F B}, F_{L}, & 0
\end{array}
$$

More Precision Observables are necessary to overconstrain the deviations $\mathbf{C}_{\mathbf{i}}^{\text {NP }}$
\Rightarrow In this portal the best paradigm to unveil New Physics in Flavour Physics will be an accurate determination of Wilson coefficients. In particular those associated to operators:

$$
\mathcal{O}_{\mathbf{7}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}, \quad \mathcal{O}_{\mathbf{9}}=\frac{\mathbf{e}^{\mathbf{2}}}{\mathbf{1 6} \pi^{2}}\left(\overline{\mathbf{s}} \gamma_{\mu} \mathbf{P}_{\mathbf{L}} \mathbf{b}\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \quad \mathcal{O}_{\mathbf{1 0}}=\frac{e^{2}}{16 \pi^{2}}\left(\overline{\mathbf{s}} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
$$

and chiral counterparts $\mathcal{O}_{7,9,10}^{\prime}(\mathrm{L} \leftrightarrow \mathrm{R})$

\bullet Wilson Coefficients are tested $C_{i}=C_{i}^{S M}+\mathrm{C}_{\mathrm{i}}^{\text {NP }}\left\{\begin{array}{l}\text { different levels of accuracy } \\ \text { allow different ranges of NP }\end{array}\right.$
Wilson coefficients [$\left.\mu_{b}=\mathcal{O}\left(m_{b}\right)\right]$

Observables

$\underline{S M \text { values }}$

$$
\begin{align*}
& \mathbf{C}_{7}^{e f f}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{9}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{10}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{7}^{\prime}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{9}^{\prime}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{10}^{\prime}\left(\mu_{\mathbf{b}}\right)
\end{align*}
$$

$$
\begin{array}{cr}
\mathcal{B}\left(\overline{\mathrm{B}} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, P_{2}, P_{4,5}^{\prime} & -0.292 \\
\mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, P_{2}, P_{4,5}^{\prime} & 4.075 \\
\mathcal{B}\left(\mathrm{~B}_{s} \rightarrow \mu^{+} \mu^{-}\right), \mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, P_{4}^{\prime} & -4.308 \\
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, P_{1} & -0.006 \\
\mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, P_{1} & 0 \\
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{F B}, F_{L}, P_{1}, P_{4}^{\prime} & 0
\end{array}
$$

$\Rightarrow B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$can fulfill this requirement providing a large set of clean observables that can test in an unprecedented way C_{9} and $C_{7,9,10}^{\prime}$.

All those new observables $P_{i}^{(\prime)}$ come from the angular distribution $\overline{\mathbf{B}}_{\mathbf{d}} \rightarrow \overline{\mathbf{K}}^{* 0}\left(\rightarrow \mathbf{K}^{-} \pi^{+}\right) \mathbf{I}^{+} \mathbf{I}^{-}$with the $K^{* 0}$ on the mass shell. It is described by $\mathbf{s}=\mathbf{q}^{2}$ and three angles $\theta_{\ell}, \theta_{\mathbf{K}}$ and ϕ

$$
\frac{d^{4} \Gamma\left(\bar{B}_{d}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} \mathbf{J}\left(\mathbf{q}^{2}, \theta_{\ell}, \theta_{K}, \phi\right)
$$

θ_{ℓ} : Angle of emission between $\bar{K}^{* 0}$ and μ^{-}in di-lepton rest frame.
θ_{K} : Angle of emission between $\bar{K}^{* 0}$ and K^{-}in di-meson rest frame. ϕ : Angle between the two planes.
\mathbf{q}^{2} : dilepton invariant mass square.

Notice LHCb uses $\theta_{\ell}^{L H C b}=\pi-\theta_{\ell}^{\text {us }}$

- large recoil for $K^{*}: E_{K^{*}} \gg \Lambda_{Q C D}$ or $4 m_{\ell}^{2} \leq q^{2}<9 \mathrm{GeV}^{2}$

Three regions in q^{2} : \quad resonance region $\left(q^{2}=m_{J / \Psi}^{2}, \ldots\right)$ betwen $9<q^{2}<14 \mathrm{GeV}^{2}$.

- low-recoil for $K^{*}: E_{K^{*}} \sim \Lambda_{Q C D}$ or $14<q^{2} \leq\left(m_{B}-m_{K^{*}}\right)^{2}$.

The differential distribution splits in J_{i} coefficients:

$$
\begin{gathered}
J\left(q^{2}, \theta_{l}, \theta_{K}, \phi\right)= \\
J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi+\left(J_{6 s} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{l} \\
+J_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi .
\end{gathered}
$$

The coefficients $\mathbf{J}_{\mathbf{i}}$ of the distribution can be reexpressed now in terms of this basis of clean observables:

Correspondence $\mathbf{J}_{\mathbf{i}} \leftrightarrow \mathbf{P}_{\mathbf{i}}^{(\prime)}$:
BROWN: LO FF-dependent observables (F_{L} Longitudinal Polarization Fraction of K^{*})

RED: LO FF-independent observables at large-recoil (defined from these eqs.)

$$
\begin{aligned}
& \left(\mathbf{J}_{2 \mathrm{~s}}+\bar{J}_{2 \mathrm{~s}}\right)=\frac{1}{4} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq} \boldsymbol{q}^{2}} \quad\left(\mathrm{~J}_{2 \mathrm{c}}+\overline{\mathrm{J}}_{2 \mathrm{c}}\right)=-\mathrm{F}_{\mathrm{L}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq} \boldsymbol{q}^{2}} \\
& \mathrm{~J}_{3}+\bar{J}_{3}=\frac{1}{2} \mathrm{P}_{1} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \Gamma+\mathrm{d} \bar{\Gamma} \overline{\mathrm{~T}}}{\mathrm{dq} q^{2}} \quad \mathrm{~J}_{3}-\bar{J}_{3}=\frac{1}{2} \mathrm{P}_{1}^{\mathrm{CP}} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \Gamma+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}}{ }^{2} \\
& \mathbf{J}_{6 \mathrm{~s}}+\overline{\mathbf{J}}_{6 \mathrm{~s}}=2 \mathrm{P}_{2} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \overline{\boldsymbol{\Gamma}}}{\mathrm{dq}}{ }^{2} \quad \quad \mathrm{~J}_{6 \mathrm{~s}}-\overline{\mathbf{J}}_{6 \mathrm{~s}}=2 \mathrm{P}_{2}^{\mathrm{CP}} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \overline{\boldsymbol{\Gamma}}}{\mathrm{dq}} \\
& \mathrm{~J}_{9}+\bar{J}_{9}=-\mathrm{P}_{3} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma} \overline{\mathrm{~T}}}{\mathrm{dq} \mathbf{q}^{2}} \quad \mathrm{~J}_{9}-\bar{J}_{9}=-\mathrm{P}_{3}^{\mathrm{CP}} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}}{ }^{2} \\
& \mathrm{~J}_{4}+\bar{J}_{4}=\frac{1}{2} \mathrm{P}_{4}^{\prime} \sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \bar{\Gamma}}{d q^{2}} \quad \mathrm{~J}_{4}-\bar{J}_{4}=\frac{1}{2} P_{4}^{\prime C P} \sqrt{\mathrm{~F}_{\mathrm{T}} F_{\mathrm{L}}} \frac{\mathrm{~d} \Gamma+\mathrm{d} \bar{\Gamma}}{d q^{2}} \\
& J_{5}+\bar{J}_{5}=P_{5}^{\prime} \sqrt{F_{T} F_{L}} \frac{d \Gamma+d \bar{\Gamma}}{d q^{2}} \quad J_{5}-\bar{J}_{5}=P_{5}^{\prime C P} \sqrt{F_{T} F_{L}} \frac{d \Gamma+d \bar{\Gamma}}{d q^{2}} \\
& J_{7}+\bar{J}_{7}=-P_{6}^{\prime} \sqrt{F_{T} F_{L}} \frac{d \Gamma+d \bar{\Gamma}}{d q^{2}} \quad J_{7}-\bar{J}_{7}=-P_{6}^{\prime C P} \sqrt{F_{T} F_{L}} \frac{d \Gamma+d \bar{\Gamma}}{d q^{2}}
\end{aligned}
$$

P_{i}, P_{i}^{\prime} defines an Optimal Basis of observables, a compromise between:

- Excellent experimental accessibility and simplicity of the fit.
- Reduced FF dependence (in the large-recoil region: $0.1 \leq q^{2} \leq 8 \mathrm{GeV}^{2}$).

$$
\mathbf{P}_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R *} A_{\perp}^{R}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}\right)}}=c_{1}+\mathcal{O}\left(\alpha_{s} \xi_{\perp, \|}\right) \quad \mathbf{S}_{5}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R *} A_{\perp}^{R}\right)}{\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{0}\right|^{2}}=\frac{c_{1} \xi_{\perp} \xi_{\|}}{c_{2} \xi_{\perp}^{2}+c_{3} \xi_{\|}^{2}}
$$

Our proposal for CP-conserving basis:

$$
\left\{\frac{\mathbf{d \Gamma}}{\mathbf{d} \mathbf{q}^{2}}, \mathbf{A}_{\mathbf{F B}}, \mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}, \mathbf{P}_{\mathbf{4}}^{\prime}, \mathbf{P}_{\mathbf{5}}^{\prime}, \mathbf{P}_{6}^{\prime}\right\} \text { or } \mathbf{P}_{\mathbf{3}} \leftrightarrow \mathbf{P}_{\mathbf{8}}^{\prime} \text { and } \mathbf{A}_{\mathrm{FB}} \leftrightarrow \mathbf{F}_{\mathrm{L}}
$$

where $P_{1}=A_{T}^{2}$ [Kruger, J.M'05],
$P_{2}=\frac{1}{2} A_{T}^{\mathrm{re}}, P_{3}=-\frac{1}{2} A_{T}^{\mathrm{im}}$ [Becirevic, Schneider'12]
$P_{4,5,6}^{\prime}$ [Descotes, JM, Ramon, Virto'13]).
The corresponding CP-violating basis $\left(J_{i}+\bar{J}_{i} \rightarrow J_{i}-\bar{J}_{i}\right.$ in numerators $)$:

$$
\left\{\mathbf{A}_{\mathrm{CP}}, \mathbf{A}_{\mathrm{FB}}^{\mathrm{CP}}, \mathbf{P}_{1}^{\mathrm{CP}}, \mathbf{P}_{2}^{\mathrm{CP}}, \mathbf{P}_{3}^{\mathrm{CP}}, \mathbf{P}_{4}^{\prime \mathrm{CP}}, \mathbf{P}_{5}^{\prime \mathrm{CP}}, \mathbf{P}_{6}^{\prime \mathrm{CP}}\right\} \text { or } \mathbf{P}_{3}^{\mathrm{CP}} \leftrightarrow \mathbf{P}_{8}^{\prime \mathrm{CP}} \text { and } \mathbf{A}_{\mathrm{FB}}^{\mathrm{CP}} \leftrightarrow \mathbf{F}_{\mathrm{L}}^{\mathrm{CP}}
$$

"Barcelona/Aachen" approach: QCDF+exploit the symmetry relations at large-recoil among FF:

$$
\begin{gathered}
\frac{m_{B}}{m_{B}+m_{K^{*}}} V\left(q^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} A_{1}\left(q^{2}\right)=T_{1}\left(q^{2}\right)=\frac{m_{B}}{2 E} T_{2}\left(q^{2}\right)=\xi_{\perp}(E) \\
\frac{m_{K^{*}}}{E} A_{0}\left(q^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{K^{*}}}{m_{B}} A_{2}\left(q^{2}\right)=\frac{m_{B}}{2 E} T_{2}\left(q^{2}\right)-T_{3}\left(q^{2}\right)=\xi_{\|}(E)
\end{gathered}
$$

\Rightarrow Transparent, valid for ANY FF parametrization (BZ, KMPW,...) and easy to reproduce.
\Rightarrow Dominant correlations automatically implemented in a transparent way.
\Rightarrow This allows you to construct clean observables from the observation that at LO in $1 / m_{b}, \alpha_{s}$ and large-recoil limit (E_{K}^{*} large):

$$
\begin{aligned}
& A_{\perp}^{L, R}=\sqrt{2} N m_{B}(1-\hat{s})\left[\left(\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{10}^{\prime}\right)+\frac{2 \hat{m}_{b}}{\hat{s}}\left(\mathcal{C}_{7}^{\text {eff }}+\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\perp}\left(E_{K^{*}}\right), \quad A_{\|}^{L, R} \propto \xi_{\perp}\left(E_{K^{*}}\right) \\
& A_{0}^{L, R}=-\frac{N m_{B}(1-\hat{s})^{2}}{2 \hat{m}_{K^{*}} \sqrt{\hat{s}}}\left[\left(\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10}^{\prime}\right)+2 \hat{m}_{b}\left(\mathcal{C}_{7}^{\text {eff }}-\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\| \|}\left(E_{K^{*}}\right) .
\end{aligned}
$$

\Rightarrow Symmetry Breaking corrections (α_{s} and P.C.) are added in our computation:

- known α_{s} factorizable and non-factorizable corrections from QCDF.
- factorizable power corrections (using a systematic procedure for each FFp, see later)
- non-factorizable power corrections including charm-quark loops.

Analysis of LHCb data On

$$
B \rightarrow K^{*} \mu^{+} \mu^{-}
$$

Present bins: $[0.1,2],[2,4.3],[4.3,8.68],[1,6],[14.18,16],[16,19] \mathrm{GeV}^{2}$.

Observable	Experiment	SM prediction	Pull
$\left\langle P_{1}\right\rangle_{[0.1,2]}$	$-0.19_{-0.35}^{+0.40}$	$0.000_{-0.044}^{+0.043}$	-0.5
$\left\langle P_{1}\right\rangle_{[2,4.3]}$	$-0.29_{-0.46}^{+0.65}$	$-0.051_{-0.046}^{+0.046}$	-0.4
$\left\langle P_{1}\right\rangle_{[4.38 .68]}$	$0.36_{-0.30}^{+0.31}$	$-0.117_{-0.056}^{+0.052}$	+1.5
$\left\langle P_{1}\right\rangle_{[1,6]}$	$0.15_{-0.41}^{+0.39}$	$-0.055_{-0.043}^{+0.041}$	+0.5
$\left\langle P_{2}\right\rangle_{[0.1,2]}$	$0.03_{-0.15}^{+0.14}$	$0.172_{-0.021}^{+0.020}$	-1.0
$\left\langle P_{2}\right\rangle_{[2,4.3]}$	$0.50_{-0.00}^{+0.07}$	$0.234_{-0.080}^{+0.060}$	+2.9
$\left\langle P_{2}\right\rangle_{[4.3,8.68]}$	$-0.25_{-0.08}^{+0.07}$	$-0.400_{-0.037}^{+0.049}$	+1.7
$\left\langle P_{2}\right\rangle_{[1,6]}$	$0.33_{-0.12}^{+0.11}$	$0.084_{-0.078}^{+0.060}$	+1.8
$\left\langle A_{\mathrm{FB}}\right\rangle_{[0.1,2]}$	$-0.02_{-0.13}^{+0.13}$	$-0.136_{-0.048}^{+0.051}$	+0.8
$\left\langle A_{\mathrm{FB}}\right\rangle_{[2,4.3]}$	$-0.20_{-0.08}^{+0.08}$	$-0.081_{-0.055}^{+0.059}$	-1.1
$\left\langle A_{\mathrm{FB}}\right\rangle_{[4.3,8.68]}$	$0.16_{-0.05}^{+0.06}$	$0.220_{-0.113}^{+0.138}$	-0.5
$\left\langle A_{\mathrm{FB}}\right\rangle_{[1,6]}$	$-0.17_{-0.06}^{+0.06}$	$-0.035_{-0.034}^{+0.037}$	-2.0

- \mathbf{P}_{1} : No substantial deviation (large error bars).
- $\mathbf{A}_{\mathrm{FB}}-\mathbf{P}_{2}$: A slight tendency for a lower value of the second and third bins of A_{FB} is consistent with a $2.9 \sigma(1.7 \sigma)$ deviation in the second (third) bin of P_{2}.
- Zero: Preference for a slightly higher q^{2}-value for the zero of $A_{\text {FB }}$ (same as the zero of P_{2}).

Both effects can be accommodated with $\mathcal{C}_{7}^{\mathrm{NP}}<0$ and/or $\mathcal{C}_{9}^{\mathrm{NP}}<0$.

Connection via $\mathcal{H}_{\text {eff }}$

Observable	Experiment	SM prediction	Pull
$\left\langle P_{4}^{\prime}\right\rangle_{[0.1,2]}$	$0.00_{-0.52}^{+0.52}$	$-0.342_{-0.026}^{+0.031}$	+0.7
$\left\langle P_{4}^{\prime}\right\rangle_{[2,4.3]}$	$0.74{ }_{-0.60}^{+0.54}$	$0.569_{-0.063}^{+0.073}$	+0.3
$\left\langle P_{4}^{\prime}\right\rangle_{[4.3,8.68]}$	$1.18{ }_{-0.32}^{+0.26}$	$1.003_{-0.032}^{+0.028}$	+0.6
$\left\langle P_{4}^{\prime}\right\rangle_{[1,6]}$	$0.58{ }_{-0.36}^{+0.32}$	$0.555_{-0.058}^{+0.067}$	+0.1
$\left\langle P_{5}^{\prime}\right\rangle_{[0.1,2]}$	$0.45{ }_{-0.24}^{+0.21}$	$0.533_{-0.041}^{+0.033}$	-0.4
$\left\langle P_{5}^{\prime}\right\rangle_{[2,4.3]}$	$0.29{ }_{-0.39}^{+0.40}$	$-0.334_{-0.113}^{+0.097}$	+1.6
$\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]}$	$-0.19_{-0.16}^{+0.16}$	$-0.872_{-0.041}^{+0.053}$	+4.0
$\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$	$0.21_{-0.21}^{+0.20}$	$-0.349_{-0.100}^{+0.088}$	+2.5
$\left\langle P_{4}^{\prime}\right\rangle_{[14.18,16]}$	$-0.18_{-0.70}^{+0.54}$	$1.161_{-0.332}^{+0.190}$	-2.1
$\left\langle P_{4}^{\prime}\right\rangle_{[16,19]}$	$0.70_{-0.52}^{+0.44}$	$1.263_{-0.248}^{+0.119}$	-1.1
$\left\langle P_{5}^{\prime}\right\rangle_{[14.18,16]}$	$-0.79_{-0.22}^{+0.27}$	$-0.779_{-0.363}^{+0.328}$	+0.0
$\left\langle P_{5}^{\prime}\right\rangle_{[16,19]}$	$-0.60{ }_{-0.18}^{+0.21}$	$-0.601_{-0.367}^{+0.282}$	+0.0

Definition of the anomaly:

- $\mathbf{P}_{\mathbf{5}}^{\prime}$: There is a striking $4.0 \sigma(1.6 \sigma)$ deviation in the third (second) bin of P_{5}^{\prime}.

Consistent with large negative contributions in $\mathcal{C}_{7}^{\mathrm{NP}}$ and/or $\mathcal{C}_{9}^{\mathrm{NP}}$.

- \mathbf{P}_{4}^{\prime} : in agreement with the SM , but within large uncertainties, and it has future potential to determine the sign of $\mathcal{C}_{10}^{\mathrm{NP}}$.
- \mathbf{P}_{6}^{\prime} and \mathbf{P}_{8}^{\prime} : show small deviations with respect to the SM, but such effect would require complex phases in $\mathcal{C}_{9}^{\mathrm{NP}}$ and/or $\mathcal{C}_{10}^{\mathrm{NP}}$.

Us: $(-0.19-(-0.872)) / \sqrt{0.16^{2}+0.053^{2}}=4.05$ and Exp: $(-0.19-(-0.872+0.053)) / \sqrt{0.16^{2}+0.053^{2}}=3.73$

Our SM predictions+LHCb data

Figure: Experimental measurements and SM predictions for some $B \rightarrow K^{*} \mu^{+} \mu^{-}$observables. The black crosses are the experimental LHCb data. The blue band corresponds to the SM predictions for the differential quantities, whereas the purple boxes indicate the corresponding binned observables.

Goal: Determine the Wilson coefficients $\mathcal{C}_{7,9,10}, \mathcal{C}_{7,9,10}^{\prime}: \mathcal{C}_{i}=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$
Standard χ^{2} frequentist approach: Asymmetric errors included, estimate theory uncertainties for each set of $\mathcal{C}_{i}^{N P}$ and all uncertainties are combined in quadrature.

IMPORTANT: Experimental correlations are included in the updated plot
We do three analysis: a) large-recoil data b) large+low-recoil data c) [1-6] bin
Observables:

- $B \rightarrow K^{*} \mu^{+} \mu^{-}$: We take observables $P_{1}, P_{2}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}$ and P_{8}^{\prime} in the following binning:
-large-recoil: $[0.1,2],[2,4.3],[4.3,8.68] \mathrm{GeV}^{2}$.
-low recoil: $[14.18,16],[16,19] \mathrm{GeV}^{2}$
-wide large-recoil bin: $[1,6] \mathrm{GeV}^{2}$.
- Radiative and dileptonic B decays: $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}, \mathcal{B}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)_{[1,6]}$ and $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{l}\left(B \rightarrow K^{*} \gamma\right)$ and the $B \rightarrow K^{*} \gamma$ time-dependent CP asymmetry $S_{K^{*} \gamma}$

Updated result using $\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{A}_{\text {FB }}$ and experimental correlations.
2013 Data favours clearly contributions inside C_{7} and C_{9}.

From the analysis of the set
$\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{A}_{\mathrm{FB}}+\mathbf{B R}+\exp$. correlations we get:
4.3 σ (large-recoil)
3.6 σ (large + low recoil)
2.8σ for [1-6] bin.

Colored: large-recoil and dashed: large+low recoil orange: [1-6] bin

- We checked (for completeness) that we find same significance using $\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{F}_{\mathbf{L}}$ instead of \mathbf{A}_{FB}. Positive: Our SM F_{L} fully compatible with all data (not only LHCb) and less correlated. Negative: Result using F_{L} is less solid than using $A_{F B}$ since it depends on choice of FF.

Result of our analysis (large+low recoil data+rad) if we allow all Wilson coefficients to vary freely:

Coefficient	1σ	2σ	3σ
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-0.05,-0.01]$	$[-0.06,0.01]$	$[-0.08,0.03]$
$\mathcal{C}_{9}^{\mathrm{NP}}$	$[-1.6,-0.9]$	$[-1.8,-0.6]$	$[-2.1,-0.2]$
$\mathcal{C}_{10}^{\mathrm{NP}}$	$[-\mathbf{0 . 4 , \mathbf { 1 . 0 }}$	$[-1.2,2.0]$	$[-2.0,3.0]$
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-\mathbf{0 . 0 4}, \mathbf{0 . 0 2]}$	$[-0.09,0.06]$	$[-0.14,0.10]$
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$[-0.2,0.8]$	$[-0.8,1.4]$	$[-1.2,1.8]$
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	$[-\mathbf{0 . 4 , 0 . 4]}$	$[-1.0,0.8]$	$[-1.4,1.2]$

Table: $68.3 \%(1 \sigma), 95.5 \%(2 \sigma)$ and $99.7 \%(3 \sigma)$ confidence intervals for the NP contributions to WC.

In conclusion our pattern of [PRD88 (2013) 074002] obtained from an $\mathcal{H}_{\text {eff }}$ approach is

$$
\mathrm{C}_{9}^{N P} \sim[-1.6,-0.9], \quad \mathrm{C}_{7}^{N P} \sim[-0.05,-0.01], \quad \mathrm{C}_{9}^{\prime} \sim \pm \delta \quad \mathbf{C}_{10}, \mathrm{C}_{7,10}^{\prime} \sim \pm \epsilon
$$

where δ is small and ϵ is smaller.

Other groups later on confirmed independently the same finding of $C_{9}^{N P}<0$:

- different observables $S_{i}\left([1,6]\right.$ bins and low recoil from $\left.B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$, other techniques (lattice) and statistical approaches (bayesian)

However, all those groups also claimed $C_{9}^{N P}+C_{9}^{\prime} \simeq 0 \Rightarrow C_{9}^{\prime}=-C_{9}^{N P}$, i.e., POSITIVE \Rightarrow based mainly on $1 \mathrm{fb}^{-1}$ data at on $B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}$

BUT

We showed in [1307.5683] that:

- 3 rd bin of P_{5}^{\prime} prefers clearly a C_{9}^{\prime} NEGATIVE, i.e., $C_{9}^{N P}+C_{9}^{\prime}<0$.

There was TENSION between $B \rightarrow K^{*} \mu^{+} \mu^{-}$data and $B^{-} \rightarrow K^{-} \mu \mu\left(\right.$ not with $\left.B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$

BUT

We showed in [1307.5683] that:

- 3 rd bin of P_{5}^{\prime} prefers a C_{9}^{\prime} NEGATIVE, i.e., $C_{9}^{N P}+C_{9}^{\prime}<0$.

There was TENSION between $B \rightarrow K^{*} \mu^{+} \mu^{-}$data and $B^{-} \rightarrow K^{-} \mu \mu\left(\right.$ not with $\left.B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$
... till the new $3 \mathrm{fb}^{-1}$ data from LHCB on $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$CAME OUT

New $3 \mathbf{f b}^{-1}$ data shows excellent consistency between anomaly in $P_{5}^{\prime}\left(B \rightarrow K^{*}\right)$ and $B \rightarrow K$ modes:

CONFIRMS a deficit in the $3 \mathrm{fb}^{-1} B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$and $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$data

Confirms $C_{9}^{N P}+C_{9}^{\prime}<0$ from D.M.V. 1307.5683

$$
C_{9}^{N P}+C_{9}^{\prime} \simeq 0
$$

Independent cross-check (Wingate) from lattice low-recoil.

Possible Explanations of the Anomaly

and

Updated SM predictions

- Factorizable or non-factorizable power corrections?
\rightarrow under control
- Effect from charm resonances? [Lyon,Zwicky] versus [Khodjamirian, Mannel, Pivovarov, Wang] KMPW says positive contribution to $C_{9}^{\text {eff }}$
Controversial LZ says negative (easy to test by checking other observables, i.e, P_{1})
- Statistical fluctuation of data?
\rightarrow perform consistency checks [Matias,Serra]
\Rightarrow New physics explanation within a 'model"
- Possible model: Z^{\prime} respecting ΔM constrain. [Descotes,JM,Virto'13]
- R_{K} deficit: Consistent with $C_{9}^{N P \mu}=-1.5$ but with Universal LFV.

General idea: (Jäger,Camalich): Parametrize power corrections to form factors:

$$
F\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

\Rightarrow fit a_{F}, b_{F}, \ldots to the full form factor F (taken e.g. from LCSR)
BUT two CRUCIAL POINTS not to miss:
I. Power corrections are constrained from

- exact kinematic FF relations at $q^{2}=0$. Example $a_{T 1}=a_{T 2}$ from $T_{1}(0)=T_{2}(0)$
- definition of input scheme to fix $\xi_{\perp, \|}$. Example $a_{A 2}=\frac{m_{B}+m_{K_{*}}}{m_{B}-m_{K *}} a_{A 1}$ from $\xi_{\|} \equiv c_{1} A_{1}\left(q^{2}\right)+c_{2} A_{2}\left(q^{2}\right)$
\Rightarrow Correlations among $a_{F_{i}}, b_{F_{i}}, \ldots$ that cannot be VIOLATED.
II. Freedom to choose the most appropriate scheme to reduce the impact of power corrections:
- input: $\left\{T_{1}, A_{0}\right\}$ to define $\left\{\xi_{\perp}, \xi_{\|}\right\} \Rightarrow$ power corrections eliminated in T_{1} and A_{0}
- our input: $\left\{V, c_{1} A_{1}+c_{2} A_{2}\right\} \Rightarrow$ power corrections eliminated in V and minimized in A_{1}, A_{2}

Philosophy of [Jäger\& Camalich'12 and '14]: No Form Factor computation (LCSR, DSE,...) is trustable \Rightarrow For this reason they need to focus on observables less sensitive to FF like the P_{i} and they do not give predictions for the S_{i} (in any paper), because with their approach the errors on the S_{i} would be huge.

We disagree with this point of view: good to reduce dependence on FF but up to a compromise.

Jaeger-Camalich 2012

- a_{F}, b_{F} and $\Delta a_{F}, \Delta b_{F}$ estimated from average of central values of different FF parametrizations:
\Rightarrow Lost fundamental correlations
\Rightarrow Central values of P_{i} from SFF
- Definition of $\xi_{\perp, \|}$ from T_{1}, A_{0} : Non-optimal scheme chosen $\times 2$ errors size. (P_{i} indep. of A_{0})
- q^{2}-dependence for $\xi_{\perp, \|}$: old HQET limit prediction, \Rightarrow Transfer known info artificially inflated unknown power corrections.
- Identification $\xi_{\perp}(0)=T_{1}^{\text {exp }}(0)$ from $B \rightarrow K^{*} \gamma$ assumes $S M$, and inconsistently includes non-factorizable PC inside T_{1}.
- ALL Form Factors in helicity basis.
- only P_{i} considered.

Our paper JHEP12(2014)125

- Work consistently within one FF parametrisation at a time (KMPW, BZ) compute a_{F}, b_{F}. \Rightarrow Respect correlations:
(central values and errors)
\Rightarrow Central values of P_{i} from
SFF + PC reproduce exactly FF.
- $\Delta a_{F}, \Delta b_{F}=\mathcal{O}\left(\Lambda / m_{B}\right) \times F$
- Definition of $\xi_{\perp, \|}$ from $V, A_{1}+A_{2}$ like Beneke et al.: choose the most appropriate scheme.
- q^{2}-dependence of $\xi_{\perp, \|}$: $\frac{\xi_{i}(0) m_{F}^{2}}{m_{F}^{2}-s}\left(1+b_{F}\left[z\left(s, \tau_{0}\right)-z\left(0, \tau_{0}\right)\right]+\ldots\right.$
- We do a flat scan of power correction parameters and provide each error separately.
- We include non-factorizable PC.
- ALL Form Factors always consistently in Transversity Basis.

Jaeger-Camalich 2014

- Soft FF are undervalutated:
$\xi_{\perp}(0)=0.31 \pm 0.04$
meaning of this error unclear!:
Average of LCSR ONLY c.v.!!!
$\xi_{\perp}(0)=0.31_{-0.10}^{+0.20}($ our KMPW)
$\Rightarrow F_{L}$ error smaller than us!
\Rightarrow Central values of P_{i} from SFF
- $\Delta a_{F}, \Delta b_{F}=10 \% \times \xi_{\perp, \|}(0)$
(our same approach) BUT some Helicity FF: $T_{+}, V_{+} \simeq 0$
- Definition of $\xi_{\perp, \|}$:
- Still BAD scheme used $\times 2$
- Wrong: our scheme is $\xi_{\perp}\left(q^{2}\right) \propto V\left(q^{2}\right)$ not $V_{-}\left(q^{2}\right)!!$ $\Rightarrow P_{5}^{\prime}$ IS scheme dependent
- They do also flat scan but do not provide errors that are added linearly.
- ALL Form Factors in helicity basis.
- only P_{i} considered.

It is a well known fact in QFT the problem of scheme dependence and
\rightarrow the convenience to choose the most appropriate scheme.

- one should choose the renormalisation scheme in such a way that effects of unknown power corrections get absorbed as much as possible into the soft form factors (input parameters taken from LCSR calculations or from experiment.)
\rightarrow complete analogy to the case of perturbative loop calculations.
- one can always construct a scheme that artificially blows up uncertainties from power corrections: Consider an observable depending on only one single form factor.
- good scheme: Take this FF directly as input and power corrections would not appear at all.
- bad scheme: Instead one could choose a scheme where this FF is related to a different input parameter up to unknown power corrections, but obviously this increases the uncertainty of the result artificially.

In summary: In the P_{5}^{\prime} case the combination of a bad scheme choice to define $\xi_{\perp, \|}$ together with a change of FF basis from transversity (where they are computed) to helicity (J.\&C choice) blow up factorizable power correction errors (x 3-5)

Jaeger\&Camalich'14: $\mathrm{S}_{5}^{[1,6]}=-0.13_{-0.19}^{+0.22}$ (only error from P_{5}^{\prime}): They added errors linearly. (but $\xi_{\perp}(0)$ is clearly undervalutated so the error is possibly larger)

On the contrary, two very different methods gets very good agreement:

Our computation'14: Model-independent (applicable to different LCSR), dimens. arguments for p.c.

$$
\mathrm{S}_{5}^{[1,6]}=-0.18_{-0.06-0.05}^{+0.05+0.05} \text { CASE BZ par. (cv. use of } m_{c}^{M S} \text { or } m_{c}^{\text {pole }} \text {) }
$$

Errors: Param+Hadronic+ Factorizable p.c. + non-factorizable p.c. + charm-loop effects: Flat scan p.c.
Altmannshofer\&Straub'13: Full form factors with correlations using BZ (factorizable p.c. included)

$$
\mathrm{S}_{5}^{[1,6]}=-0.14 \pm 0.02 \text { (non-factorizable p.c. }+ \text { charm not included) }
$$

Error gaussian to flat scan $\times 2$ approx. $\rightarrow+0.04$ (good agreement with our +0.05)
\rightarrow The error in J\&C +0.22 based on an estimated of p.c. is $>200 \%$ larger when compared to us. Bad scheme used in J\&C induced a factor of 2 in some bins.

Besides some FF errors in J\&C like V_{+}has duplicate error size from 2012 to 2014? and no complete set of FF are presented in 2014 to compare with 2012.

Non-factorizable contributions and charm-loop effects

We add to this:

- non-factorizable power corrections: power corrections that are not part of form factors
\Rightarrow We single out the pieces not associated to FF $\mathcal{T}_{i}^{\text {had }}=\left.\mathcal{T}_{i}\right|_{C_{7}^{(1)} \rightarrow 0}$ entering $\left\langle K^{*} \gamma^{*}\right| H_{\text {eff }}|B\rangle$ and multiply each of them with a complex q^{2}-dependent factor:

$$
\mathcal{T}_{i}^{\text {had }} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\text {had }},
$$

with

$$
r_{i}(s)=r_{i}^{a} e^{i \phi_{i}^{a}}+r_{i}^{b} e^{i \phi_{i}^{b}}\left(s / m_{B}^{2}\right)+r_{i}^{c} e^{i \phi_{i}^{c}}\left(s / m_{B}^{2}\right)^{2} .
$$

$r_{i}^{a, b, c} \in[0,0.1]$ and $\phi_{i}^{a, b, c} \in[-\pi, \pi]$: random scan and take the maximum deviation from the central values $r_{i}\left(q^{2}\right) \equiv 0$ to each side, to obtain asymmetric error bars.

(a)

(c)

(b)

(d)

Charm loop: Insertion of 4-quark operators $\left(\mathcal{O}_{1,2}^{c}\right)$ or penguin operators $\left(\mathcal{O}_{3-6}\right)$ induces a positive contribution in $C_{9}^{\text {eff }}$. - We followed LCSR computation and prescription from KMPW to recast the effect inside $C_{9}^{\text {eff }}$.

$$
\mathcal{C}_{9} \rightarrow \mathcal{C}_{9}+s_{i} \delta C_{9}^{K M P W}\left(q^{2}\right)
$$

even if KMPW says $s_{i}=1$, we allow s_{i} in a range $[-1,1]$.

Non-factorizable contributions and charm-loop effects

We add to this:

- non-factorizable power corrections: power corrections that are not part of form factors
\Rightarrow We single out the pieces not associated to FF $\mathcal{T}_{i}^{\text {had }}=\left.\mathcal{T}_{i}\right|_{C_{7}^{(1)} \rightarrow 0}$ entering $\left\langle K^{*} \gamma^{*}\right| H_{\text {eff }}|B\rangle$ and multiply each of them with a complex q^{2}-dependent factor:

$$
\mathcal{T}_{i}^{\text {had }} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\text {had }},
$$

with

$$
r_{i}(s)=r_{i}^{a} e^{i \phi_{i}^{a}}+r_{i}^{b} e^{i \phi_{i}^{b}}\left(s / m_{B}^{2}\right)+r_{i}^{c} e^{i \phi_{i}^{c}}\left(s / m_{B}^{2}\right)^{2} .
$$

$r_{i}^{a, b, c} \in[0,0.1]$ and $\phi_{i}^{a, b, c} \in[-\pi, \pi]$: random scan and take the maximum deviation from the central values $r_{i}\left(q^{2}\right) \equiv 0$ to each side, to obtain asymmetric error bars.

Charm loop: Insertion of 4-quark operators $\left(\mathcal{O}_{1,2}^{c}\right)$ or penguin operators $\left(\mathcal{O}_{3-6}\right)$ induces a positive contribution in $C_{9}^{\text {eff }}$.

- We followed LCSR computation and prescription from KMPW to recast the effect inside $C_{9}^{\text {eff }}$.

$$
\mathcal{C}_{9} \rightarrow \mathcal{C}_{9}+s_{i} \delta C_{9}^{K M P W}\left(q^{2}\right)
$$

even if KMPW says $s_{i}=1$, we allow s_{i} in a range $[-1,1]$.

In [Lyon,Zwicky'14] a 350% "correction" to the FA to explain the anomaly in P_{5}^{\prime} instead of NP.

- Many model-dependent assumptions: resonance model extrapolated far from resonances, constant fudge factors $\eta_{c}, \eta_{c}^{\prime}$ are valid everywhere?

$$
C_{9}^{\text {eff }}=C_{9}+\eta_{c} h_{c}\left(q^{2}\right)+h_{\text {rest }}\left(q^{2}\right) \quad C_{9}^{\prime \text { eff }}=C_{9}^{\prime}+\eta_{c}^{\prime} h_{c}\left(q^{2}\right)
$$

same for $B \rightarrow K \mu \mu$ than for $B \rightarrow K^{*} \mu \mu$? can a 350% correction be accommodated within QCD? constraints on new $\bar{b} s c \bar{c}$ structures??
We propose different tests to disprove it:

- The proposal should survive a global analysis of all P_{i}. Indeed NONE of the illustrative examples selected works for all observables in all bins, either fail for some bin of P_{2} and/or P_{5}^{\prime}.
- $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}: b \rightarrow d$ transition assume no NP. Similar charm contribution with few changes ($1-\frac{R_{b}}{R_{t}} e^{i \alpha}$) prefactor infront of charm loop and presence of annihilation contributions.

$$
\text { At } 8 \mathrm{GeV}^{2} \quad\left|C_{9}^{+}\right|^{2} \sim 32.1 \text { with } \eta_{c}+\eta_{c}^{\prime}=1(F A) \quad\left|C_{9}^{+}\right|^{2} \sim 2.5 \text { with } \eta_{c}+\eta_{c}^{\prime}=-2.5(L Z)
$$

where $C_{9}^{+}=C_{9}^{\text {eff }}+C_{9}^{\text {eff }}$.
\Rightarrow Test: If no suppression is seen in the measured BR w.r.t. SM the L\&Z proposal is in trouble. However one can play with the phase to pass the test, assuming a huge $\operatorname{SU}(3)$ breaking.

- Finally if R_{K} deviation is confirmed increasing its significance the proposed charm pollution cannot explain it while on the contrary our pattern [see D. Ghosh et al.'14] can make it. This is probably one of the clearest discriminating method.

Our final Predictions in SM [1407.8526].

The most complete prediction including all errors in KMPW parametrization for the relevant observables. Errors included: parametric, FF, factorizable and non-factorizable p.c. NOT charm loops.

Blue prediction in scheme $2\left(T_{1}, A_{0}\right)$. (see 1407.8526 for BZ and more observables). Summary: Power corrections cannot be the explanation of anomaly

The most complete prediction including all errors in KMPW parametrization for the relevant observables. Errors added in quadrature: parametric, FF, factorizable and non-factorizable p.c. including charm loops.

Orange band is all errors except charm. Green band is charm loop.

- Number of symmetries of S -wave and P -wave part is 4 (same as P -wave).
- Number of free parameters (observables)

$$
2 n_{\text {Amplitudes }}-n_{\text {symmetries }}=2(6+2)-4=12 \text { observables }
$$

8 P-wave observables and 4 S -wave observables. BUT S-wave part has 6 parameters:

$$
\begin{aligned}
\frac{\mathbf{W}_{S}}{\Gamma_{\text {full }}^{\prime}}= & \frac{3}{16 \pi}\left[\mathbf{F}_{\mathrm{S}} \sin ^{2} \theta_{\ell}+\mathbf{A}_{\mathbf{S}} \sin ^{2} \theta_{\ell} \cos \theta_{K}+\mathbf{A}_{\mathrm{S}}^{4} \sin \theta_{K} \sin 2 \theta_{\ell} \cos \phi\right. \\
& \left.+\mathbf{A}_{\mathrm{S}}^{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi+\mathbf{A}_{S}^{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi+\mathbf{A}_{\mathrm{S}}^{8} \sin \theta_{K} \sin 2 \theta_{\ell} \sin \phi\right]
\end{aligned}
$$

Only 4 parameters out of $F_{S}, A_{S}, A_{S}^{4,5,7,8}$ are independent!!! Two new constraints [L. Hofer, J.M'15]:

$$
\begin{aligned}
\bar{k}_{S} F_{T}\left[\bar{k}_{2}^{2}-\bar{P}_{1}^{2}-4 \bar{P}_{2}^{2}-4 \bar{P}_{3}^{2}\right]= & -\frac{8}{3} \bar{P}_{2}\left[\bar{A}_{S}^{4} \bar{A}_{S}^{5}+\bar{A}_{S}^{7} \bar{A}_{S}^{8}\right]+\frac{4}{3} \bar{P}_{3}\left[\bar{A}_{S}^{5} \bar{A}_{S}^{7}-4 \bar{A}_{S}^{4} \bar{A}_{S}^{8}\right] \\
& +\frac{1}{3}\left(\bar{k}_{2}+\bar{P}_{1}\right)\left[4\left(\bar{A}_{S}^{4}\right)^{2}+\left(\bar{A}_{S}^{7}\right)^{2}\right]+\frac{1}{3}\left(\bar{k}_{2}-\bar{P}_{1}\right)\left[\left(\bar{A}_{S}^{5}\right)^{2}+4\left(\bar{A}_{S}^{8}\right)^{2}\right], \\
\bar{A}_{S} \sqrt{\frac{F_{T}}{1-F_{T}}}\left[\bar{k}_{2}^{2}-\bar{P}_{1}^{2}-4 \bar{P}_{2}^{2}-4 \bar{P}_{3}^{2}\right]= & -4 \bar{P}_{2}\left[\bar{P}_{4}^{\prime} \bar{A}_{S}^{5}+2 \bar{P}_{5}^{\prime} \bar{A}_{S}^{4}-2 \bar{P}_{6}^{\prime} \bar{A}_{S}^{8}-\bar{P}_{8}^{\prime} \bar{A}_{S}^{7}\right] \\
& +4 \bar{P}_{3}\left[\bar{P}_{5}^{\prime} \bar{A}_{S}^{7}-\bar{P}_{6}^{\prime} \bar{A}_{S}^{5}-2 \bar{P}_{4}^{\prime} \bar{A}_{S}^{8}+2 \bar{P}_{8}^{\prime} \bar{A}_{S}^{4}\right] \\
& +2\left(\bar{k}_{2}+\bar{P}_{1}\right)\left[2 \bar{P}_{4}^{\prime} \bar{A}_{S}^{4}-\bar{P}_{6}^{\prime} \bar{A}_{S}^{7}\right]+2\left(\bar{k}_{2}-\bar{P}_{1}\right)\left[\bar{P}_{5}^{\prime} \bar{A}_{S}^{5}-2 \bar{P}_{8}^{\prime} \bar{A}_{S}^{8}\right] .
\end{aligned}
$$

where $\bar{k}_{2}=1+F_{T}^{C P} / F_{T}, \bar{k}_{S}=1+F_{S}^{C P} / F_{S}$ and $\bar{P}_{i}=P_{i}+P_{i}^{C P}, \bar{A}_{S}^{i}=\left(A_{S}^{i}+A_{S}^{i C P}\right) / \sqrt{F_{S}\left(1-F_{S}\right)}$

Consequences:

- 1st quadratic equation $\bar{A}_{S}^{5}=f\left(\bar{A}_{S}^{4}, \bar{A}_{S}^{7}, \bar{A}_{S}^{8}, \bar{P}_{1,2,3}, F_{T}\right)$
- 2on linear equation $\bar{A}_{S}=g\left(\bar{A}_{S}^{4}, \bar{A}_{S}^{5}, \bar{A}_{S}^{7}, \bar{A}_{S}^{8}, \bar{P}_{1,2,3}, \bar{P}_{4,5,6,8}^{\prime}, F_{T}\right)$

One obtains immediately the constraints:

$$
\begin{array}{lr}
\left|\bar{A}_{S}^{4}\right| \leq \frac{1}{2} \sqrt{3 \bar{k}_{S} F_{T}\left(\bar{k}_{2}-\bar{P}_{1}\right)}, & \left|\bar{A}_{S}^{5}\right| \leq \sqrt{3 \bar{k}_{S} F_{T}\left(\bar{k}_{2}+\bar{P}_{1}\right)}, \\
\left|\bar{A}_{S}^{7}\right| \leq \sqrt{3 \bar{k}_{S} F_{T}\left(\bar{k}_{2}-\bar{P}_{1}\right)}, & \left|\bar{A}_{S}^{8}\right| \leq \frac{1}{2} \sqrt{3 \bar{k}_{S} F_{T}\left(\bar{k}_{2}+\bar{P}_{1}\right) .}
\end{array}
$$

More interestingly at the maximum of P_{2} namely \mathbf{q}_{1}^{2} (taken no NP phases $O^{C P} \sim 0$ and $P_{3} \sim 0$):

$$
A_{S}^{4}\left(\mathbf{q}_{1}^{2}\right)=\frac{1}{2} A_{S}^{5}\left(\mathbf{q}_{1}^{2}\right) \quad \text { and } \quad A_{S}^{7}\left(\mathbf{q}_{1}^{2}\right)=2 A_{S}^{8}\left(\mathbf{q}_{1}^{2}\right)
$$

And at the zero of P_{2} namely \mathbf{q}_{0}^{2} two relations are fulfilled (under same hypothesis and $P_{6,8} \sim 0$):

$$
\begin{gathered}
{\left[\left(4 A_{S}^{42}+A_{S}^{72}\right)\left(1+P_{1}\right)+\left(A_{S}^{52}+4 A_{S}^{82}\right)\left(1-P_{1}\right)\right]_{\mathrm{q}_{0}^{2}}=3\left[\left(1-F_{S}\right) F_{S} F_{T}\left(1-P_{1}^{2}\right)\right]_{\mathrm{q}_{0}^{2}}} \\
A_{S}\left(\mathbf{q}_{0}^{2}\right)=\left[\frac{2 F_{L}\left(2 A_{S}^{4}\left(1+P_{1}\right) P_{4}^{\prime}+A_{S}^{5}\left(1-P_{1}\right) P_{5}^{\prime}\right)}{\left.\sqrt{F_{L} F_{T}\left(1-P_{1}^{2}\right)}\right]_{\mathbf{q}_{0}^{2}}}\right.
\end{gathered}
$$

From the symmetries of the distribution in absence of scalars [JM, N. Serra'14]

$$
\begin{gathered}
\bar{P}_{2}=+\frac{1}{2 \bar{k}_{1}}\left[\left(\bar{P}_{4}^{\prime} \bar{P}_{5}^{\prime}+\delta_{1}\right)+\frac{1}{\beta} \sqrt{\left(-1+\bar{P}_{1}+\bar{P}_{4}^{\prime 2}\right)\left(-1-\bar{P}_{1}+\beta^{2} \bar{P}_{5}^{\prime 2}\right)+\delta_{2}+\delta_{3} \bar{P}_{1}+\delta_{4} \bar{P}_{1}^{2}}\right] \\
\text { where } \bar{P}_{i}=P_{i}+P_{i}^{C P} \quad \beta=\sqrt{1-4 m_{\ell}^{2} / s}
\end{gathered}
$$

Assuming NP is real in WC it is an excellent approximation $\delta_{i} \sim\left(\operatorname{Im} A_{i}\right)^{2} \rightarrow 0, P_{i}^{C P} \rightarrow 0$.

- At the zero of P_{2} called q_{0}^{2}

$$
P_{4}^{\prime 2}\left(q_{0}^{2}\right)+\beta^{2} P_{5}^{\prime 2}\left(q_{0}^{2}\right)=1+\eta\left(q_{0}^{2}\right)
$$

where $\eta\left(q_{0}^{2}\right) \rightarrow 0$ if $P_{1} \rightarrow 0$

- with $\eta=0$ if not fulfilled this equation is a test of presence of RHC.
- with η included this equation establishes a relation between the zero of $A_{F B}$ and the anomaly in P_{5}^{\prime}
- At the maximum of P_{2} called q_{1}^{2}

$$
P_{4}^{\prime}\left(q_{1}^{2}\right)=\beta P_{5}^{\prime}\left(q_{1}^{2}\right)
$$

** KMPW in BZ: 0.16 ± 0.12.

This bin is as interesting/important as the third bin of P_{5}^{\prime}. It contains three important infos:

- If $3 \mathrm{fb}^{-1}$ data confirms saturation \Rightarrow shift of maximum of P_{2} from $q_{1}^{2 S M}=2 \mathrm{GeV}^{2}$.
- At LO the position of the maximum (free from SFF) is:

$$
q_{1}^{2}=\frac{2 m_{b} M_{B} C_{7}^{\text {eff }}}{C_{10}-C_{9}^{\text {eff }}\left(q_{1}^{2}\right)}
$$

with $C_{7}^{\text {eff } \prime}=C_{9}^{\prime}=C_{10}^{\prime}=0$ and $P_{2}^{\max }\left(q_{1}^{2}\right)=1 / 2$

- We have established a new link between:

Maximum of P_{2} and presence of RH currents:

$$
P_{2}^{\max }=1 / 2 \Rightarrow \text { NO RH currents }
$$

Intuitively,
At the maximum of $P_{2} \Rightarrow\left|n_{\perp}\right| \simeq\left|n_{\|}\right| \Rightarrow P_{1} \simeq 0$

- We proposed in [PRD88(2013)074002] a simple "model" a \mathbf{Z}^{\prime} gauge boson contributing to $\mathcal{O}_{9}=e^{2} /\left(16 \pi^{2}\right)\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)$ with couplings:

$\mathcal{L}^{q}=\left(\bar{s} \gamma_{\nu} P_{L} b \Delta_{L}^{s b}+\bar{s} \gamma_{\nu} P_{R} b \Delta_{R}^{s b}+\right.$ h.c. $) Z^{\prime \nu} \quad \mathcal{L}^{l e p}=\left(\bar{\mu} \gamma_{\nu} P_{L} \mu \Delta_{L}^{\mu \bar{\mu}}+\bar{\mu} \gamma_{\nu} P_{R} \mu \Delta_{R}^{\mu \bar{\mu}}+\ldots\right) Z^{\prime \nu}$
- $\Delta_{R}^{s b} \sim 0$ and $\Delta_{L}^{s b}$ with same phase as $V_{t b} V_{t s}^{*}$ (to avoid ϕ_{s}), $\Delta_{L}^{\mu \mu}=\Delta_{R}^{\mu \mu}$ (to keep $C_{10}^{N P} \sim 0$).
- The model would contribute to Δm_{S} ($\Delta_{R}^{s b} \sim 0$ kills the largest contribution) bound on $\Delta_{L}^{s b}$.
- Considering the constraints from [Buras, de Fazio, Girrbach] our Z^{\prime} with $M_{z}^{\prime}=1 \mathrm{TeV}$ (compatible with Δm_{s}) and couplings to muons of at least order 0.1-0.2 would yield $C_{9}^{N P} \sim \mathcal{O}(-1)$.
- Recent analysis on R_{K} from [D. Ghosh, M. Nardecchia, S.A. Renner'14] points that our NP solution also works for R_{K} with NP in muons and not electrons. Also our second scenario with NP in $C_{9}^{N P \mu}$ and $C_{9}^{\prime \mu}$ NEGATIVE is preferred.
Particular embeddings of a Z^{\prime} inside models discussed by [R. Gauld et al'13, W. Altmannshofer et al.' 14].
- Our analysis of the LHCb data on $B \rightarrow K^{*} \mu^{+} \mu^{-}$based on the clean observables $P_{i}^{(\prime)}$ together with a set of radiative data shows the following pattern:

$$
\mathrm{C}_{9}^{N P} \sim[-1.6,-0.9], \quad \mathrm{C}_{7}^{\mathrm{NP}} \sim[-0.05,-0.01], \quad \mathrm{C}_{9}^{\prime} \sim \pm \delta \quad \mathrm{C}_{10}, \mathrm{C}_{7,10}^{\prime} \sim \pm \epsilon
$$

with δ and ϵ small.

- New $3 \mathrm{fb}^{-1}$ data on $B^{-} \rightarrow K^{-} \mu^{+} \mu^{-}$and $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$confirms this pattern.
- Possible alternative explanations to NP to explain the anomaly: power corrections are indeed under control and huge charm loop effects can be easily tested.
- Using the symmetries of the distribution on the P and S -wave we found: a) the S -wave parameters are not independent, b) a connection between the zero of $A_{F B}$ and the anomaly in $P_{5}^{\prime}, \mathrm{c}$) we have established a new link between the value of the maximum of P_{2} and the presence of RH currents.
- A simple model with a Z^{\prime} can possibly explain the deviations observed. But we should wait for $3 \mathrm{fb}^{-1}$ data on $B \rightarrow K^{*} \mu^{+} \mu^{-}$to come soon.

Back-up slides:

The folding technique. S-wave pollution

PROPOSAL for an ALTERNATIVE way to approach the full fit angular distribution

Full fit of the angular distribution with a small dataset

Under the assumption of ABSENCE of NP: no new scalars and real Wilson coefficients one has

- Free parameters $F_{L}, P_{1}, P_{4,5}^{\prime}$.
- P_{2} is a function of the other observables and $P_{6,8}^{\prime}$ are set to zero.

Figure: Residual distribution of P_{5}^{\prime} when fitting with 100 events. The fit of a gaussian distribution is superimosed.

We find testing this fit for values around the measured values: convergence and unbiased pulls with as little as 50 events per bin. Gaussian pulls are obtained with only 100 events.

This opens the possibility to perform a full angular fit analysis with small bins in q^{2}

The main hypothesis (real WC) can be tested measuring $P_{i}^{C P}$.

Independent cross check from "Lattice": M. Wingate (private communication and preliminary result)
\Rightarrow confirming our result with $C_{9}^{N P}+C_{9}^{\prime} \sim-1$

The Folding Technique

- Full angular distribution: Difficult it requires more data. Possible way using symmetries N.Serra, JM'14.
- Uniangular distributions: - Integrates out the interesting observables • S-wave polluted in a bad way. JM'12.
- Breakthrough at LHCb: Substitute uniangular distributions \rightarrow folded distributions.

A prototypical example: The identification of $\phi \leftrightarrow \phi+\pi$ (for $\phi<0$) produces a "folded" angle $\hat{\phi} \in[0, \pi]$ with $\theta_{K}, \theta_{\ell} \in[0, \pi]$ in terms of which a (folded) differential rate $d \hat{\Gamma}(\hat{\phi})=d \Gamma(\hat{\phi})+d \Gamma(\hat{\phi}-\pi)$ is:

$$
\begin{aligned}
& \frac{1}{\Gamma_{\text {full }}} \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \hat{\phi}}=\frac{9}{16 \pi}\left[2 \mathrm{~F}_{\mathrm{L}} \cos ^{2} \theta_{K} \sin ^{2} \theta_{\ell}+\frac{1}{4} \mathbf{F}_{\mathrm{T}} \sin ^{2} \theta_{K}\left(3+\cos 2 \theta_{\ell}\right)\right. \\
& \left.\quad+\frac{1}{2} \mathrm{P}_{1} \mathbf{F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \hat{\phi}+2 \mathrm{P}_{2} \mathbf{F}_{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{\ell}-\mathrm{P}_{3} \mathbf{F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \hat{\phi}\right]\left(\mathbf{1}-\mathbf{F}_{\mathrm{S}}\right)+\frac{\mathbf{W}_{1}}{\Gamma_{\text {full }}}
\end{aligned}
$$

where the S-wave piece is

$$
\delta_{\mathrm{sw}}^{(1)}=\frac{\mathbf{W}_{1}}{\boldsymbol{\Gamma}_{\text {full }}}=\frac{3}{8 \pi}\left(\mathbf{F}_{\mathrm{S}}+\mathbf{A}_{\mathrm{S}} \cos \hat{\theta}_{K}\right) \sin ^{2} \theta_{\ell}
$$

This folded distribution is used to determine $P_{1,2,3}$. Generalization with lepton masses in [JM'12].

Advantages of folding:

- It reduces the \# of coefficients (observables) to a manageable experimentally subset.

In this case: $11 \mathrm{~J}+8 \tilde{\jmath} \rightarrow 7 \mathrm{~J}+4 \tilde{\jmath}$

- It helps to disentangle the unwanted S-wave pollution due to its distinct angular dependence.
- An important remark is that at LHCb P_{1} is obtained in a folding in association with $P_{2,3}$. But $P_{1}\left(=A_{T}^{2}\right)$ who is called to play a relevant role in determining the presence of RH currents in Nature ($C_{7,9,10}^{\prime}$) has large error bars.

We propose 3 foldings (second, third and fourth in the list) that can disentangle P_{1} from $P_{2,3}$.

Obs.	S-wave	Folding	$\hat{\phi}$ range
$P_{1,2,3}$	A_{s}	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}-\pi, \hat{\theta}_{l}, \hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1}	$A_{s 5}, A_{s 8}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1} and P_{2}	$A_{s 4}, A_{s 5}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1} and P_{3}	$A_{s 5}, A_{s 7}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1} and P_{4}^{\prime}	$A_{s 5}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1} and P_{5}^{\prime}	$A_{s}, A_{s 5}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(-\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)$	$[0, \pi]$
P_{1} and P_{6}^{\prime}	$A_{s}, A_{s 7}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\pi-\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\pi-\hat{\phi}, \pi-\hat{\theta}_{l}, \hat{\theta}_{K}\right)$	$[-\pi / 2, \pi / 2]$
P_{1} and P_{8}^{\prime}	$A_{s 7}$	$d \Gamma\left(\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\pi-\hat{\phi}, \hat{\theta}_{l}, \hat{\theta}_{K}\right)+d \Gamma\left(\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)+d \Gamma\left(\pi-\hat{\phi}, \pi-\hat{\theta}_{l}, \pi-\hat{\theta}_{K}\right)$	$[-\pi / 2, \pi / 2]$

Table: Foldings needed to single out the interesting observables, with the corresponding remaining S-wave pollution. For all foldings, $\hat{\theta}_{\ell}$ and $\hat{\theta}_{K}$ lie within $[0, \pi / 2]$, whereas $\hat{\phi}$ has different ranges depending on the observables considered.

S-wave pollution

- Another possible source of uncertainty is the \mathbf{S}-wave contribution coming from $B \rightarrow K_{0}^{*} I^{+} I^{-}$. [Becirevic, Tayduganov '13], [Blake et al.'13]
- We will assume that both P and S waves are described by q^{2}-dependent FF times a Breit-Wigner function.
- The distinct angular dependence of the S -wave terms in folded distributions allow to disentangle the signal of the P -wave from the S -wave: $P_{i}^{(\prime)}$ can be disentangled from S-wave pollution [JM'12].
Problem: Changing the normalization used for the distribution from

$$
\frac{d \Gamma_{K}^{*}}{d q^{2}} \equiv \Gamma_{K^{*}}^{\prime} \rightarrow \Gamma_{\text {full }}^{\prime}
$$

introduces a $\left(1-F_{S}\right)$ in front of the P -wave.

$$
\Gamma_{\text {full }}^{\prime}=\Gamma_{K^{*}}^{\prime}+\Gamma_{S}^{\prime}
$$

and the longitudinal polarization fraction associated to Γ_{S}^{\prime} is

$$
\mathrm{F}_{\mathrm{S}}=\frac{\Gamma_{S}^{\prime}}{\Gamma_{\text {full }}^{\prime}} \quad \text { and } \quad 1-\mathrm{F}_{\mathrm{S}}=\frac{\Gamma_{K^{*}}^{\prime}}{\Gamma_{\text {full }}^{\prime}}
$$

The modified distribution including the S-wave and new normalization $\Gamma_{\text {full }}^{\prime}$:

$$
\begin{aligned}
& \frac{1}{\Gamma_{\text {full }}^{\prime}} \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left[\frac{3}{4} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K}+\mathrm{F}_{\mathrm{L}} \cos ^{2} \theta_{K}\right. \\
& \quad+\left(\frac{1}{4} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K}-F_{L} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}+\frac{1}{2} \mathrm{P}_{1} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{I} \cos 2 \phi \\
& \quad+\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\frac{1}{2} \mathrm{P}_{4}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{I} \cos \phi+\mathrm{P}_{5}^{\prime} \sin 2 \theta_{K} \sin \theta_{I} \cos \phi\right) \\
& \quad-\sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}}\left(\mathrm{P}_{6}^{\prime} \sin 2 \theta_{K} \sin \theta_{I} \sin \phi-\frac{1}{2} \mathrm{P}_{8}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{I} \sin \phi\right) \\
& \\
& \left.\quad+2 \mathrm{P}_{2} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{l}-\mathrm{P}_{3} \mathrm{~F}_{\mathrm{T}} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]\left(1-\mathrm{F}_{\mathrm{S}}\right)+\frac{1}{\Gamma_{\text {full }}^{\prime}} W_{\mathrm{S}}
\end{aligned}
$$

in the massless case and where the polluting terms are

$$
\begin{aligned}
& \frac{\mathbf{W}_{S}}{\Gamma_{\text {full }}^{\prime}}=\frac{3}{16 \pi}\left[\mathbf{F}_{\mathrm{S}} \sin ^{2} \theta_{\ell}+\mathbf{A}_{\mathrm{S}} \sin ^{2} \theta_{\ell} \cos \theta_{K}+\mathbf{A}_{\mathrm{S}}^{4} \sin \theta_{K} \sin 2 \theta_{\ell} \cos \phi\right. \\
& \\
& \left.\quad+\mathbf{A}_{S}^{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi+\mathbf{A}_{\mathrm{S}}^{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi+\mathbf{A}_{S}^{8} \sin \theta_{K} \sin 2 \theta_{\ell} \sin \phi\right]
\end{aligned}
$$

We can get bounds on the size of the S-wave polluting terms.Let's take for instance A_{S}

$$
\mathbf{A}_{\mathbf{S}}=2 \sqrt{3} \frac{1}{\Gamma_{\text {full }}^{\prime}} \int \operatorname{Re}\left[\left(A_{0}^{\prime}{ }^{L} A_{0}^{L *}+A_{0}^{\prime R} A_{0}^{R *}\right) B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right) B W_{K^{*}}^{\dagger}\left(m_{K \pi}^{2}\right)\right] d m_{K \pi}^{2}
$$

where

$$
\mathrm{F}_{\mathrm{S}}=\frac{8}{3} \frac{\tilde{J}_{1 a}^{c}}{\Gamma_{\text {full }}^{\prime}}=\frac{\left|A_{0}^{\prime} L\right|^{2}+\left|A_{0}^{\prime} R\right|^{2}}{\Gamma_{\text {full }}^{\prime}} \mathbf{Y} \quad \mathbf{Y}=\int d m_{K \pi}^{2}\left|B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right)\right|^{2}
$$

\mathbf{Y} factor included to take into account the width of scalar resonance K_{0}^{*}
A bound is obtained once we define the $S-P$ interference integral

$$
\mathbf{Z}=\int\left|B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right) B W_{K^{*}}^{\dagger}\left(m_{K \pi}^{2}\right)\right| d m_{K \pi}^{2}
$$

and use the bound from the Cauchy-Schwartz inequality

$$
\begin{gathered}
\left|\int(\mathrm{Re}, \mathrm{Im})\left[\left(A_{0}^{\prime}{ }^{L} A_{j}^{L *} \pm A_{0}^{\prime R} A_{j}^{R *}\right) B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right) B W_{K^{*}}^{\dagger}\left(m_{K \pi}^{2}\right)\right] d m_{K \pi}^{2}\right| \\
\leq \mathbf{Z} \times \sqrt{\left[\left|A_{0}^{\prime} L\right|^{2}+\left|A_{0}^{\prime R}\right|^{2}\right]\left[\left|A_{j}^{L}\right|^{2}+\left|A_{j}^{R}\right|^{2}\right]}
\end{gathered}
$$

From the definitions of F_{S} and F_{L} and P_{1} one gets the following bound:

$$
\left|A_{S}\right| \leq 2 \sqrt{3} \sqrt{F_{S}\left(1-F_{S}\right) F_{L}} \frac{Z}{\sqrt{\mathbf{X Y}}}
$$

the factor $\left(1-F_{S}\right)$ in the bound arises due to the fact that F_{L} is defined with respect to $\Gamma_{K^{*}}^{\prime}$ rather than $\Gamma_{\text {full }}^{\prime}$.

$$
\begin{aligned}
\left|A_{S}^{4}\right| & \leq \sqrt{\frac{3}{2}} \sqrt{F_{S}\left(1-F_{S}\right)\left(1-F_{L}\right)\left(\frac{1-P_{1}}{2}\right)} \frac{\mathbf{Z}}{\sqrt{\mathbf{X Y}}} \sim[0.05-0.11,0.10-0.19] \\
\left|A_{S}^{5}\right| & \leq 2 \sqrt{\frac{3}{2}} \sqrt{F_{S}\left(1-F_{S}\right)\left(1-F_{L}\right)\left(\frac{1+P_{1}}{2}\right)} \frac{\mathbf{Z}}{\sqrt{\mathbf{X Y}}} \sim[0.11-0.22,0.11-0.23] \\
\left|A_{S}^{7}\right| & \leq 2 \sqrt{\frac{3}{2}} \sqrt{F_{S}\left(1-F_{S}\right)\left(1-F_{L}\right)\left(\frac{1-P_{1}}{2}\right)} \frac{\mathbf{Z}}{\sqrt{\mathbf{X Y}}} \sim[0.11-0.22,0.19-0.38] \\
\left|A_{S}^{8}\right| & \leq \sqrt{\frac{3}{2}} \sqrt{F_{S}\left(1-F_{S}\right)\left(1-F_{L}\right)\left(\frac{1+P_{1}}{2}\right)} \frac{\mathbf{Z}}{\sqrt{\mathbf{X Y}}} \sim[0.05-0.11,0.06-0.11]
\end{aligned}
$$

Large recoil and low recoil ranges with $F_{S} \sim 7 \%$.
Symmetries will add non-trivial correlations [L.Hofer, JM, N.Serra'14]

