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PLAN of the TALK

Motivation and theoretical description of B — K*(— Km)/T/~ at large recoil.

e Analysis of LHCb data on P and model independent understanding of the anomaly.

1

Possible explanations of the pattern of deviations and most updated SM predictions.

e New symmetry results and S-wave.

Conclusions

Joaquim Matias Universitat Autonoma de Barcelona B — K(*);l+/,l_: SM versus New Physics




Many of us thought that the "scalar particle” found at CERN was going to be ALSO
= the PORTAL for NEW PHYSICS.
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Many of us thought that the "scalar particle” found at CERN was going to be ALSO
= the PORTAL for NEW PHYSICS.

BUT the "scalar particle” found resembles very much the SM Higgs particle,
with SM-like couplings up to the present precision = it will be a long term task...
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Many of us thought that the "scalar particle” found at CERN was going to be ALSO
= the PORTAL for NEW PHYSICS.

HOWEVER, there are OTHER PORTALS:
RARE B DECAYS (FCNC)

@ New Physics same footing as SM
@ They allow you to explore higher scales A
@ A promising golden handle: B — K*putpu~
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= In this portal the best paradigm to unveil New Physics in Flavour Physics will be an accurate determination
of Wilson coefficients. In particular those associated to operators:

2 2

e _ -
07 = m,{,(§0'lw:DRb),‘—_l“’7 Og = W (S’}/NPLb)(f’y”e), O10 = 167 = (S’}/NP/_b)(f’y ’Y5f)

_&
1672
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and chiral counterparts 07 4 14 (L <> R) /
b S b¥s

o Wilson Coefficients are tested C; = C°M + CNP dlfFeren.t levels of accuracy
! ! allow different ranges of NP

Wilson coefficients [up = O(mp)] Observables SM values
CS (1) B(B — X7), Al(B — K*¥), Sk~ Ars. FL, —0.292
Cg(pb) (B — X éﬁ) AFB, FL, 4.075
ClO(/‘b) B(_B — W ),B(B — X £€)7AFB, F[_, —4.308
Ci{(#b) B(B — Xs ) A/(B — K* ) 5K*77AF37 F —0.006
Co (k) B(B — X.t0), Ars, Fi 0
CiO(Mb) B(B - H’+/’L7)7AFBa FL& 0

More Precision Observables are necessary to overconstrain the deviations C!\'P
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= In this portal the best paradigm to unveil New Physics in Flavour Physics will be an accurate determination
of Wilson coefficients. In particular those associated to operators:

2 e2

e
O7 = my(50, PRO)F™ . Og = 163 5 (37,PLb)(1y"0),  O19 = 162 (37, Pb) (B s),

e
1672

and chiral counterparts 0} g 5 (L ¢ R) / ‘ #
b S b¥s

® Wilson Coefficients are tested C; = C°M 4 CNP dlfFeren.t levels of accuracy
! ! allow different ranges of NP

Wilson coefficients [pp = O(mp)] Observables SM values
C5 (1) B(B — Xs7), Al(B = K™), Sk, Arg, FL, P2, Py s —0.292
Cg(ILLb) B(BHXSKE),AFB,FL,PQ,PLS 4.075
Clg(//b) BKBS %/lv/lf),B(B—)Xséf),AFB,FL,P‘/l —4.308
C’7(,ub) B(B—>X57),A/(B—> K*'Y),SK*WAFB;FLapl —0.006
Co (1) B(B — Xstl), Arg, Fi, P1 0
Cio(u) B(Bs — ' pu™), Ars, Fr, P, P, 0

= B — K*(— Km)u™p~ can fulfill this requirement providing a large set of clean observables
that can test in an unprecedented way Co and C; g 0.
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All those new observables P,-(/) come from the angular distribution By — K*0(— K= x+)IT1~ with the K*° on the
mass shell. It is described by s = q? and three angles 0;, 0« and &

d*I'(By) 9
= - 0.0k,
dq? dcos b, dcosOk do 327TJ(q 00,0k, 0)

0. Angle of emission between K*©
and p~ in di-lepton rest frame.

Ox: Angle of emission between K*©
and K~ in di-meson rest frame.

¢: Angle between the two planes.

q?: dilepton invariant mass square.

Notice LHCb uses 97 = 7 — gus

e large recoil for K*: Ex+ > Agcp or 4m? < ¢* < 9 GeV?

Three regions in g*: @ resonance region (g = mi/w, ...) betwen 9 < ¢° < 14 GeV2.

o low-recoil for K*: Ex« ~ Agcp or 14 < g> < (mp — mk+)?.
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Relation between J; and P;, P, observables

The differential distribution splits in J; coefficients:

H(G%. 01,0k, 0) =

N1ssin? O + e cos? Oy + (Jos sin? O + e cos? Oc) cos 20 + J3 sin? O sin® 0 cos 2¢
+Jy sin 20 sin 20, cos ¢ + J5 sin 20 sin 6, cos ¢ + (Js sin? 0k + J. cos? Ok) cos b,
+J7sin 20 sin 0 sin & + Jg sin 20 sin 260, sin ¢ + Jo sin® O sin? 0 sin 26 .

- 1_ dr4dr
(JZS + JZs) - ZFT qu
Correspondence J; Pi(’): - dr + df
J3+Jd3= 5P1Fr dq?
BROWN: LO FF-dependent B dr + df
observables (F; Longitudinal Jos + Jos = 2P2F 7 da?
Polarization Fraction of K*) T
ot Go— _p.p dr+dr
RED: LO FF-independent 9+ Jo = —PsFr 40
observables at large-recoil -1, dr +dr
(defined from these eqs.) Jatda= 5PaVFrFL dq?
- , dr +dr
Here for simplicity (my = 0). J5 +J5 = Ps vy FTFLTqZ
See [J.M'12] for m, # 0. dr + df
q
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The coefficients J; of the distribution can be reexpressed now in terms of this basis of clean observables:

- dr +dr
c c) = —F
(Joc + J2¢) L dq?
- 1 _cp. dl+dl
—J;=-PSPF
J3—J; 2P Fr g
Jou — Jou = 2PSPF LT
dqg?
Jo—To= _ngFTdr+dr
dq?
S dr +dr
—Js= PP /FrFL ——
Ja— 14 5 4 TFL dq2
. , dr +dr
Js — Js = PP /FrF, d:2



The Optimized basis of CP conserving and CP violating Observables

P;, P! defines an Optimal Basis of observables, a compromise between:

@ Excellent experimental accessibility and simplicity of the fit.

@ Reduced FF dependence (in the large-recoil region: 0.1 < ¢*> < 8 GeV?).

/3 RelAbAY — A5 AR)

REAGAT — AFAT)  adig)
VIA (A2 + [AL)

Pi= =
’ AR IALR + 1A~ @ +ct]

=a+0(aséy ) Ss=

Our proposal for CP-conserving basis:

r
{(;qu’AFB’ PI,PQ, P3, P:‘, ;—,, Pg} or P3 — Pé and AFB — F|_

where P; = Ag,— [Kruger, J.M’05],

P, = %A{ﬁ Ps; = —%Ai{—n [Becirevic, Schneider'12]
Pg 5.6 [Descotes, JM, Ramon, Virto'13}).

The corresponding CP-violating basis (J; + Ji—= Ji—J:in numerators):

CcP CP CP CP /ICP /CP /CP CP /ICP CP CP
{ACP,AFB,PI y P2 s P3 5 P4 s P5 s P6 } or P3 e P8 and AFB < FL
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Theoretical Framework at low-q%: How to compute the P; observables.

" Barcelona/Aachen” approach: QCDF+exploit the symmetry relations at large-recoil among FF:

o V(%) = P Al(?) = Ta(q%) = G Ta(q?) = €1 (E)

e Ag(q?) = ke A (g?) — ZE=Tke Ay (g?) = T2 T,(q?) — T3(q?) = §(E)

mp

= Transparent, valid for ANY FF parametrization (BZ, KMPW,...) and easy to reproduce.
= Dominant correlations automatically implemented in a transparent way.

= This allows you to construct clean observables from the observation that at LO in 1/mj, as and
large-recoil limit (Ex large):

-
AR = VaNms(1 - 3) {(cgﬂf +C5™) F (Cro+ Cio) + (G5 + c;ff’)] €u(Ex-), ARR e, (Ex-)
Nmg(1—35 2 / ~ e eff/
apr o Nms(l— 97 [(csff G5 F (Cuo — Clo) + 2 (CST — S )} 1(Ex-).
2mK*\/§

= Symmetry Breaking corrections («s and P.C.) are added in our computation:

e known «; factorizable and non-factorizable corrections from QCDF.
o factorizable power corrections (using a systematic procedure for each FFp, see later)
e non-factorizable power corrections including charm-quark loops.

Joaquim Matias Universitat Autonoma de Barcelona B — K(*);l+/,l_: SM versus New Physics



Analysis of LHCb data
on

B— K*utu~




Experimental evidence: EPS+ Beauty

Present bins: [0.1,2], [2,4.3], [4.3,8.68], [1,6], [14.18,16], [16,19] GeV2.

Observable Experiment  SM prediction Pull ¢ P;: No substantial deviation
(large error bars).
Py 01998 00077938 05
<p1>[243] _0.29+8~22 _0-051+8'812 —0.4 © App-P2: A slight tendency for a
’ +0. +0. lower value of the second and
(P1)a.3,5.68] 036703  —0.11770%28 +1.5 wer Ve . .
third bins of Apg is consistent
(Py) 0.157937  —0.05570% +0.5
1/11,6] 19041 Y99 _0.043 : with a 2.9 (1.7 ¢) deviation in
the second (third) bin of P».
(Ppig 0033 017272 10 (third) bin of P2
(P2)p2.a3) 0.5075:07 0.234750%0 129 o Z.ero: P;eference for a slightly
(P2)(4.3,8.68] —0.25%008  —0.4071003)  +1.7 t:\'ghe(r q 'Valuihfor the Zir‘; c;f
Poug  03El  osef t1g A (emessthezeroof £)
) ) Both effect b
<AFB>[0 1,2] _0-02t8.i§ _0-136J—r8.8451£13 +0.8 oth etiects can _e NP
A -0 20+0.08 -0 081+0.055 11 accommodated with C7 <0
( FB>[2,4.3] “Y_0.08 V6L _0.069 : NP
10,06 10,138 and/or C3" < 0.
(AFB)[4.3 5.68] 0.167¢ 05 02205533 05 c L
Arslug | OITSS 00378l a0 Comnection via Her
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Observable Experiment  SM prediction Pull
(Pi)o.12 0007932 034270031 g7
(Pi)p.asy 0.7475:54 0.56913953  +0.3
(Pa)a3,8.68] 1.18%5:35 1.003%093  +0.6
(Pi)e) 0.5870:32 0.555 0008  +0.1
(Ps)0.1,2) 0.45705 0.533%005; 0.4
(PE) o3 0291940 _0.33479397 116
(Pi)lassesy —0-197070  —0.87270%  +4.0
(P)g 0217920 03497098 455
(Pa)(14.18,16] ~0.18%5 %5 11617933  —2.1
(Pa)16,19) 0.70%93;  1.263%03; 1.1
(PE)(14.18.16] —0.79t‘3’;§ —0.779f§;§§§ +0.0
(P5)116,19] —0.60773 0601737 +0.0
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Experimental evidence: EPS+ Beauty

Definition of the anomaly:

o P5: There is a striking 4.00 (1.6 0)

deviation in the third (second) bin
of PL.

Consistent with large negative
contributions in CX* and/or C)F.

P:15 in agreement with the SM, but
within large uncertainties, and it
has future potential to determine
the sign of CIYy .

P& and Pg: show small deviations
with respect to the SM, but such
effect would require complex phases
in C3 and/or C}YF.

Us: (—0.19 — (—0.872))/1/0.167 + 0.0532 = 4.05 and Exp: (—0.19 — (—0.872 + 0.053))/1/0.162 + 0.053% = 3.73
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Our SM predictions+LHCb data
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Figure : Experimental measurements and SM predictions for some B — K*u™ 1~ observables. The black crosses
are the experimental LHCb data. The blue band corresponds to the SM predictions for the differential quantities,
whereas the purple boxes indicate the corresponding binned observables.
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Model Independent Analysis

Goal: Determine the Wilson coefficients C7.9 10, C4 g 19: Ci = C,-SM + C,-NP

Standard x? frequentist approach: Asymmetric errors included, estimate theory uncertainties for each
set of C,-NP and all uncertainties are combined in quadrature.

IMPORTANT: Experimental correlations are included in the updated plot
We do three analysis: a) large-recoil data b) large+low-recoil data c) [1-6] bin
Observables:

e B — K*u"u~: We take observables Py, P>, P}, P, P§ and P} in the following binning:
-large-recoil: [0.1,2],[2,4.3],[4.3,8.68] GeV2.
-low recoil: [14.18,16], [16,19] GeV?
-wide large-recoil bin: [1,6] GeV2.

o Radiative and dileptonic B decays: B(B — Xs7)E, >1.6cev, B(B — Xs;ﬁu_)[l,(,] and
B(Bs — ptpu~), Al(B — K*vy) and the B — K*~ time-dependent CP asymmetry Sk~
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Updated result with experimental correlations

Updated result using P;j, P}, Apg and experimental correlations.

2013 Data favours clearly contributions inside C; and Cy.

4o W occs 1 From the analysis of the set
@ ssswct P;.P{,Apg+ BR + exp. correlations
of e ] weeet
o 4.30 (large-recoil)
= o - 3.60 (large + low recoil)
© 2.80 for [1-6] bin.
ot ]
Colored: large-recoil and
dashed: large-+low recaoil
—4r ! orange: [1-6] bin

—0.15 0.0 —005 000 005 010 015
P
@ We checked (for completeness) that we find same significance using P;, P}, Fi instead of Apg.
Positive: Our SM F| fully compatible with all data (not only LHCb) and less correlated.
Negative: Result using F; is less solid than using Agg since it depends on choice of FF.
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Model Independent Analysis: General case all WC free

Result of our analysis (large+low recoil data+rad) if we allow all Wilson coefficients to vary freely:

Coefficient lo 20 30

NP [-0.05,-0.01] [-0.06,0.01] [-0.08,0.03]
cy® [-1.6,-09] [-1.8,-0.6] [-2.1, -0.2]
Y [-0.4,1.0] [-1.2,2.0] [—2.0,3.0]
chP [-0.04,0.02] [-0.09,0.06] [-0.14,0.10]
cyP [-0.2,0.8] [-0.8,1.4] [-1.2,1.8]
Y [—0.4,0.4] [-1.0,0.8] [-1.4,1.2]

Table : 68.3% (10), 95.5% (20) and 99.7% (3 o) confidence intervals for the
NP contributions to WC.

In conclusion our pattern of [PRD88 (2013) 074002] obtained from an .+ approach is
CoP ~[-1.6,-09], CJP ~[-0.05-0.01], Cy~ 4§ Cyo,Cy g~ *e

where § is small and € is smaller.
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Other groups later on confirmed independently the same finding of CéVP < 0:

e different observables S; ([1,6] bins and low recoil from Bt — K™ ™ pu™),
other techniques (lattice) and statistical approaches (bayesian)

4 I I T 1 5 T T T T T T T
4 - -
3 RS SO NS ST S 4
3t s 1
oL . 1,0 E |
: i 1F i
i ]
- of .
h SM
U L . - b |
-1 . : ' : B
12 3 4 5 6 .
Re(C)") Co G

(1) Altmannshofer, Straub 1308.1501, (2) Beaujean, Bobeth, van Dyk 1310.2478,  (3) Horgan et al. 1310.3887
(1) Hambrock, Hiller, Schacht, Zwicky 1308.4379.

However, all those groups also claimed C}"¥ + ¢} ~ 0 = C§ = —C}F, i.e,, POSITIVE
= based mainly on 1 fb~! data at on B~ — K~ putp~
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BUT

We showed in [1307.5683] that:
@ 3rd bin of P prefers clearly a ¢ NEGATIVE, i.e., CéVP + C§ < 0.

1.0 1.0
—_— N
! H—t— !
O.5F— C9 == 0 - os5}lb——1— Cg < 0 i
I i S S
oo} — — N e ]
af | & i
I T
—o05 I I —osf ; } ]
—1.0} 1ol ]
o 2 ) 6 8 L = - = =
a® (GeVv?) a? (Gev?)

There was TENSION between B — K*utpu~ data and B~ — K~ pup (not with B® — K%utpu™)
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BUT

We showed in [1307.5683] that:
o 3rd bin of P} prefers a Cj NEGATIVE, i.e., CP + C} < 0.

1.0 1.0
—_— N
! H—t— !
0.5 = C=0 ] 0.5 [ — G <0
—d i S S
. ool —— 1 oo i —
I T
—0.5} I I —o.sf ! ]
—1.0f 1ol
o 2 ) 6 8 L = - = =
a® (GeVv?) a? (Gev?)

There was TENSION between B — K*utpu~ data and B~ — K~ pup (not with B® — K%utpu™)

... till the new 3 fb~! data from LHCB on BT — K*utu~ CAME OUT
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New 3 fb~! data shows excellent consistency between anomaly in P, (B — K*) and B — K modes:

mm] CSR Lattice —eData - . |_CSR L attice —e—Data

L T T T T e T T T T 3
2 _ 3 5 N
% ] B+ﬁ K+ﬂ+ﬂ E % BO—» Kol'l+/'l E
. LHCb O 4 LHCb 3
s E k) 3
> 3 _: > 3 _:

o + .+ ] % ]
% LE T T ++ = g 2 _+_ =
2 1 o 7
S 1 & + :
= ] = ]
% o] 1 1 1 1 ] % o . . | | 3

[§) s 10 15 5 202 R (s) 5 10 15 20
g? [GeV/c*] qz [GeV2/C4]

CONFIRMS a deficit in the 3 fb~ B¥ — K+ utpu~

30—

M B e e e O ELAA B e e e e e e e 200 —prrerereer
10 IXOZ—
u THEORY - | e THEORY “ THEORY {
sl EXP “ EXP J EXP ar
é 307@:AT - B £ 140 g 30 4 — % l-lO:'
o mpN | L jr.] 1
Vol = v . Vo Vv
0 EE O 10 i -
oy allo= R Op} [
10 i oF [ 10 T-LL [
Ll . [
o | oF B = of
0 5 10 s » 0 5 10 s ] 0 s 10 5 0 o s w150
7 7 7 7
Confirms 'Y + C§ < 0 from D.M.V. 1307.5683 P+ ci~0

Independent cross-check (Wingate) from lattice low-recoil.
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Possible Explanations of the Anomaly
and

Updated SM predictions
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Different explanations raised to explain the anomaly and tensions

o Factorizable or non-factorizable power corrections?
— under control

@ Effect from charm resonances? [Lyon,Zwicky] versus [Khodjamirian, Mannel, Pivovarov, Wang]
KMPW says positive contribution to C§
Controversial LZ says negative (easy to test by checking other observables, i.e, P;)

@ Statistical fluctuation of data?
— perform consistency checks [Matias,Serra]

= New physics explanation within a ‘model”

o Possible model: Z’ respecting AM constrain. [Descotes,JM,Virto'13]
o Ry deficit: Consistent with CQNP” = —1.5 but with Universal LFV.
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Including power corrections factorizable and non-factorizable

General idea: (J3dger,Camalich): Parametrize power corrections to form factors:

SO (0% q
F(q?) = F"(&1 (%) + AF™(¢®) + ar + bFW + ...
B

= fit ar, br. ... to the full form factor F (taken e.g. from LCSR)
BUT two CRUCIAL POINTS not to miss:
|. Power corrections are constrained from
e exact kinematic FF relations at g> = 0. Example a1 = a from T1(0) = T»(0)
o definition of input scheme to fix £, ||. Example aa = %am from £ = aAi(q?) + 2Ax(q?)

= Correlations among ar,, br,, ... that cannot be VIOLATED.

i

[l. Freedom to choose the most appropriate scheme to reduce the impact of power corrections:
o input: {71, Ao} to define {{,&) }= power corrections eliminated in 77 and Ag

o our input: {V, c1A; + oAy }= power corrections eliminated in V' and minimized in A;, Ay

Philosophy of [Jiger& Camalich’'12 and '14]: No Form Factor computation (LCSR, DSE,...) is trustable =
For this reason they need to focus on observables less sensitive to FF like the P; and they do not give predictions
for the S; (in any paper), because with their approach the errors on the S; would be huge.

We disagree with this point of view: good to reduce dependence on FF but up to a compromise.

B — K(*);l+/,l_: SM versus New Physics
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Jaeger-Camalich 2012 Our paper JHEP12(2014)125 Jaeger-Camalich 2014

@ ar, br and Aar, Abr estimated @ Work consistently within one FF @ Soft FF are undervalutated:
from average of central values of parametrisation at a time €.(0)=0.31+0.04
different FF parametrizations: (KMPW, BZ) compute af, br. meaning of this error unclear!:
= Lost fundamental correlations = Respect correlations: Average of LCSR ONLY c.v.!!!
= Central values of P; from SFF (central values and errors) £1(0) = 0.315:35 (our KMPW)
L = Central values of P; from = Fy error smaller than us!
@ Definition of £, | from Ty, Ap: SFF+PC reproduce exactly FF. = Central values of P; from SFF
Non-optimal scheme chosen x2
errors size. (P; indep. of Ag) o Aap,Abr = O(N/mg) x F © Aap, Abrp =10%x¢. (0)
) o (our same approach) BUT some
@ g°-dependence for gi—’H: @ Definition of 51—»“ from V,A; + Az Helicity FF : T, V, ~ 0
old HQET limit prediction, = like Beneke et al.: choose the
Transfer known info artificially most appropriate scheme. @ Definition of £, :

inflated unknown power corrections. o q2—dependence of fJ_7|\: o Still BAD scheme used x2

@ lIdentification £, (0) = T,7°(0 &(0)m?2 o Wrong: our scheme is
from B — K*iJ_zEss)umeslsl\Sl,) m%—s (1+bF[Z(S,T0)—Z(O,To)]+~~ gJ_(qz) X V(q2) not V,(q2)”
and inconsistently includes @ We do a flat scan of power = Pg IS scheme dependent
non-factorizable PC inside T;. correction parameters and provide @ They do also flat scan but do
each error separately. not provide errors that are added

@ ALL Form Factors in helicity basis. k
: @ We include non-factorizable PC. linearly.
@ only P; considered.

o ALL Form Factors always @ ALL Form Factors in helicity basis.

consistently in Transversity Basis. @ only P; considered.
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Further Comment on scheme dependence

It is a well known fact in QFT the problem of scheme dependence and
— the convenience to choose the most appropriate scheme.

@ one should choose the renormalisation scheme in such a way that effects of unknown power
corrections get absorbed as much as possible into the soft form factors (input parameters taken
from LCSR calculations or from experiment.)

— complete analogy to the case of perturbative loop calculations.

@ one can always construct a scheme that artificially blows up uncertainties from power corrections:
Consider an observable depending on only one single form factor.

e good scheme: Take this FF directly as input and power corrections would not appear at all.
e bad scheme: Instead one could choose a scheme where this FF is related to a different input parameter
up to unknown power corrections, but obviously this increases the uncertainty of the result artificially.

In summary: In the P case the combination of a bad scheme choice to define 1, together
with a change of FF basis from transversity (where they are computed) to helicity (J.&C
choice) blow up factorizable power correction errors (x 3-5)
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EXAMPLE of overvalued power corrections:

Jaeger&Camalich’14: Sgl’ﬁ] = —0.13fg:%§ (only error from PL): They added errors linearly.
(but &, (0) is clearly undervalutated so the error is possibly larger)

On the contrary, two very different methods gets very good agreement:

Our computation’14: Model-independent (applicable to different LCSR), dimens. arguments for p.c.
SE"G] = —0.18fg:ggfgigg CASE BZ par. (cv. use of mM> or m@ole)

Errors: Param-+Hadronic+ Factorizable p.c.+non-factorizable p.c.++charm-loop effects: Flat scan p.c.
Altmannshofer&Straub’13: Full form factors with correlations using BZ (factorizable p.c. included)

Sgl’ﬁ] = —0.14 £ 0.02 (non-factorizable p.c. 4+ charm not included)
Error gaussian to flat scan x2 approx. — +0.04 (good agreement with our +0.05)

— The error in J&C +0.22 based on an estimated of p.c. is > 200% larger when compared to us.
Bad scheme used in J&C induced a factor of 2 in some bins.

Besides some FF errors in J&C like V| has duplicate error size from 2012 to 20147
and no complete set of FF are presented in 2014 to compare with 2012.
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Non-factorizable contributions and charm-loop effects

We add to this:

@ non-factorizable power corrections: power corrections that are not part of form factors

= We single out the pieces not associated to FF 7;"2 = 77|C7(,)_>0 entering (K*v*|Hesr| B)
and multiply each of them with a complex g°-dependent factor:
77had N (1 + r;(q2))77had,
with ,
ri(s) = r?el® + rPel®(s/m%) + rfe'® (s/m%)?.
r?%€ €10,0.1] and ¢2%€ € [~7, 7]: random scan and take the maximum deviation from the
central values r;(g?) = 0 to each side, to obtain asymmetric error bars.

5) ) Charm loop: Insertion of 4-quark operators (Of ,) or penguin
AT / S a\ . .. . .
(=] é [ | operators (O3_¢) induces a positive contribution in CSH.

e We followed LCSR computation and prescription from
KMPW to recast the effect inside Cgﬁ.

Man -

YN YN
) (O Co — Co + 50 Ce™M™Y ()

| even if KMPW says s; = 1, we allow s; in a range [—1,1].

(© ()

Figure 1: Charm-loop cffect in B — K (") 6+0~: (a)-the leading-order factorizable contribution; (b)
Joaquim Matias Universitat Autonoma de Barcelona B — K(*);l+/,l_: SM versus New Physics




Non-factorizable contributions and charm-loop effects

We add to this:
@ non-factorizable power corrections: power corrections that are not part of form factors

= We single out the pieces not associated to FF 7;"2 = Til cr_,, entering (K*y*|Hefr|B)
7

and multiply each of them with a complex g°-dependent factor:
77had N (1 + ri(q2))77had,
with
ri(s) = rie'® + r,-be"‘p?(s/sz) + rfel®i(s/m%)2.
r?%€ €10,0.1] and ¢2%€ € [~7, 7]: random scan and take the maximum deviation from the

central values r;(g?) = 0 to each side, to obtain asymmetric error bars.

Charm loop: Insertion of 4-quark operators ( f2) or penguin
operators (O3_g) induces a positive contribution in C§.

¢ We followed LCSR computation and prescription from
KMPW to recast the effect inside Cgﬁ.

Co — Co + 56 C4MPY (¢?)

ACy (¢c, B»K*, M3)
=)

even if KMPW says s; = 1, we allow s; in a range [—1,1].
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In [Lyon,Zwicky'14] a 350% " correction” to the FA to explain the anomaly in Pf instead of NP.

e Many model-dependent assumptions: resonance model extrapolated far from resonances,
constant fudge factors 7)., 7/~ are valid everywhere?

C§™ = Co + nche(q?) + hrest(6%)  C&™ = C§ + 1 he(q?)

same for B — Kpuu than for B — K*upu? can a 350% correction be accommodated within QCD?
constraints on new bscC structures??

We propose different tests to disprove it:

@ The proposal should survive a global analysis of all P;. Indeed NONE of the illustrative examples
selected works for all observables in all bins, either fail for some bin of P, and/or P..

@ B — 7wt b— d transition assume no NP. Similar charm contribution with few changes
(1- ’;‘t’ "") prefactor infront of charm loop and presence of annihilation contributions.

At8GeV? |CS |2 ~ 32.1withne + L = L(FA) |C4 > ~ 2.5withn + 1. = —2.5(L2)

where G = C§ + Cief.
= Test: If no suppression is seen in the measured BR w.r.t. SM the L&Z proposal
is in trouble. However one can play with the phase to pass the test, assuming a huge SU(3)
breaking.
e Finally if Rk deviation is confirmed increasing its significance the proposed charm pollution
cannot explain it while on the contrary our pattern [see D. Ghosh et al.”14] can make it.
This is probably one of the clearest discriminating method.
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Our final Predictions in SM [1407.852).

The most complete prediction including all errors in KMPW parametrization for the relevant observables.
Errors included: parametric, FF, factorizable and non-factorizable p.c. NOT charm loops.

0.6/ |
0.4
0.4 r— —
0n on —
I 1
. 0.0 1 | - T — J
g H 1 1 i < gof——
—0.2|
—0.4 —o.2f 1 ]
]
9 1
—oaf
(1] 2 4 L1 8 [ ] 3 4 (5] 8
g (GeVh F(GeVH
1.5
0.5
L.0| E . —
1
R 0.0 I
&= 0.5 ﬂ o
= L [ e | I
0.0 —05p .I _______ - 1
_____ - ,
—0.5 === — 1.0k
o 2 4 o 8 (1] 2 4 o a8
FiGevy F(GeV?)

Blue prediction in scheme 2 ( Ty, Ag). (see 1407.8526 for BZ and more observables).
Summary: Power corrections cannot be the explanation of anomaly

Joaquim Matias Universitat Autonoma de Barcelona B — K(*);l+/,l_: SM versus New Physics



Our final Predictions in SM [1407.8526]

The most complete prediction including all errors in KMPW parametrization for the relevant observables.
Errors added in quadrature: parametric, FF, factorizable and non-factorizable p.c. including charm loops.

0.6F E T
0.4fF
0.4 ]
0.2F 3 0.2 I
— o.of E o~
= = 0.0
70_2 -
—o.4f ] —o.2f 1 ]
—0.4f o
o 2 4 6 8 (o] 2 4 6 8
g% (GeV?) g (GeV?)
1.5
05 +
10 s — -
— — 0.0 I
cod | < |
I
— 0.5 E —1.0k i
0 2 4 6 8 0 2 4 6 8
F(GeV?) g (GeV?)

band is all errors except charm. Green band is charm loop.
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Symmetries and S-wave

@ Number of symmetries of S-wave and P-wave part is 4 (same as P-wave).
@ Number of free parameters (observables)

2”Amplitudes — Nsymmetries = 2(6 + 2) — 4 = 12 observables

8 P-wave observables and 4 S-wave observables . BUT S-wave part has 6 parameters:

wW 3
= S = Ton [Fs sin? 0, + As sin? 0, cos Ok + A& sin Oy sin 20, cos ¢
full

+AZ sin O sin 0, cos ¢ -+ AL sin Ok sin 0, sin ¢ + A sin O sin 20, sin @]

Only 4 parameters out of F5,A5,Aé’5’7’8 are independent!!! Two new constraints [L. Hofer, J.M'15]:
Ry B~ P2 =P} — 4] = —SPy (A7 + ALY + P [ — 475
3R+ P (AR + (ALY) + 5 (R — P1) [(A2) + 4(AR2)?).
Ao\ {or [~ P 4B 4B = 4Py [P+ 2P4AE 2R — PYAL]

4Py [PLAL — PLAS — 2PLA 1 2P4AY]
12k + Py) [2PLAL — PLAL] + 2(ky — Pr) [PLAS — 2PLAY)] .

where ko = 1+ FEP /Fr, ks = 1+ F§P /Fs and P; = P; + PP, AL = (AL + ASP)/\/Fs(1 — Fs)

Joaquim Matias Universitat Autonoma de Barcelona B — K(*)u+/,l_: SM versus New Physics



[L. Hofer, J.M."15]

Consequences:
e 1st quadratic equatio_n A3 :_f(/_\:‘,/_\zg, /_\fg, 15172’3, F_T)
@ 2on linear equation Ag = g(A‘;,AES’,Ag,Ag, P13, P"1757678, Fr)

One obtains immediately the constraints:

_ 1 /= — _ - —
|A4| < 5 3k5FT(k2 — Pl)7 |Ag| < \/ 3/(5/:7'(/(2 + Pl),
_ - — _ 1 /= —
S| < \/3ksFr(ke = Py), ] < 5/3ksFr(s + Pr).

More interestingly at the maximum of P, namely q% (taken no NP phases 0" ~ 0 and Pz ~ 0):

1
A$(a}) = 5A3(a7) and  A%(af) = 2A%(al)

And at the zero of > namely g3 two relations are fulfilled (under same hypothesis and Ps g ~ 0):

(44 + AT)(1 + Py) + (AP + 4AP)(1 — Pyl = 3[(1 — Fs)FsFr(1 — Pl

As(a?) = 2FL(2AL(1 + Py)P, + AZ(1 — P1)PY)
VFLFr(1— P?) @

B — K(*);l+/,l_: SM versus New Physics
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Symmetries and P-wave

From the symmetries of the distribution in absence of scalars [JV, N. Serra'14]

_ 1 [ - - 1 - - - - - -
P2 =+ {(Png +61) + B\/(_l + P1+ P2)(—1— Py + B2P2) + 02 + 63P1 + 64P12]
1

where ,‘5,-:P,-+P,-CP ﬂ:,/1—4m§/s
Assuming NP is real in WC it is an excellent approximation §; ~ (ImA;)?> — 0, P,-CP — 0.

‘ ‘ ‘ ‘ — 2
1.0f P, Mys : o At the zero of P, called g;
05 : 12/ 2 22 2 2
0.0 / § Py (ap) + 8°Ps (q5) = 1+ n(ap)
-0.5; P2+pPs?=1 : ) )
_1.0f where 1(qg) = 0if P = 0
1 2 3 4 5 6

e with 7 = 0 if not fulfilled this equation is a test of
presence of RHC.

e with 7 included this equation establishes a relation
between the zero of Arg and the anomaly in P{

o At the maximum of P, called ¢}

Pi(a3) = BP5(a3)
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A closer look at the 2nd bin of P,

[L.Hofer, JM'15]

0.5: This bin is as interesting/important as the third bin of P{.
04 It contains three important infos:
o If 3fb~! data confirms saturation
N 0.3} = shift of maximum of P, from q%SM =2 GeV?.
02l @ At LO the position of the maximum (free from SFF) is:
0L @ = 2meMsCET
00 Cio — C§"(q?)
T with C#" = Cj = C{y = 0 and Py"™(q3) = 1/2
q2 @ We have established a new link between:
P§XP[243] 054007 Maximum of P, and presence of RH currents:
PV 4 = 024100 Prax = 1/2 = NO RH currents
C¥P=-15
pPy® [2,43] = 0.43 Intuitively,

At the maximum of Py = |n) | >~ |n| = Py ~0
** KMPW in BZ: 0.16 +0.12.
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A Z' particle?

o We proposed in [PRD88(2013)074002] a simple "model" a Z’ gauge boson contributing to
Oq = €2/(1672) (57, PLb)(¢+*€) with couplings:

(). .6

z’ H

£ = (5%, PLbAP + 59, PrbAR + h.c.) 27 £ = (i, Pl + iy, PruSif +..) 2"

AP ~ 0 and A? with same phase as Vi, V% (to avoid ¢5), A" = ARF (to keep CfYF ~ 0).

The model would contribute to Ams (A% ~ 0 kills the largest contribution) bound on A3’
Considering the constraints from [Buras, de Fazio, Girrbach] our Z’ with M, =1 TeV (compatible
with Ams) and couplings to muons of at least order 0.1-0.2 would yield C'F ~ O(-1).

Recent analysis on Rk from [D. Ghosh, M. Nardecchia, S.A. Renner'14] points that our NP solution

also works for Rk with NP in muons and not electrons. Also our second scenario with NP in CQNP“
and G NEGATIVE is preferred.

Particular embeddings of a Z’ inside models discussed by [R. Gauld et al'13, W. Altmannshofer et al.'14].
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Conclusions

@ Our analysis of the LHCb data on B — K*u "~ based on the clean observables P,-(’)
together with a set of radiative data shows the following pattern:

Cg'\IP ~ [-1.6,-0.9], C?P ~[-0.05,-0.01], Cg~ £6 Cyo, Ci{,lo ~ te
with ¢ and € small.

@ New 3fb~! dataon B~ — K~ utpu~ and B® — K°ut 1~ confirms this pattern.

@ Possible alternative explanations to NP to explain the anomaly: power corrections are indeed
under control and huge charm loop effects can be easily tested.

e Using the symmetries of the distribution on the P and S-wave we found: a) the S-wave parameters
are not independent, b) a connection between the zero of Agg and the anomaly in P{, c) we have
established a new link between the value of the maximum of P, and the presence of RH currents.

e A simple model with a Z’ can possibly explain the deviations observed. But we should wait for
3fb~! data on B — K*put 1~ to come soon.

Joaquim Matias Universitat Autonoma de Barcelona B — K(*)u+/,l_: SM versus New Physics



Back-up slides:
The folding technique.

S-wave pollution




PROPOSAL for an ALTERNATIVE way to approach the full fit angular distribution

Full fit of the angular distribution with a small dataset
Under the assumption of ABSENCE of NP: no new scalars and real Wilson coefficients one has

o Free parameters F, P1, Pj 5.
© P, is a function of the other observables and Py g are set to zero.

Pg' residual distribution

‘‘‘‘‘‘‘

120

We find testing this fit for values around the
measured values: convergence and unbiased
pulls with as little as 50 events per bin. Gaussian

100

80

# toy experiments

o0 ++ pulls are obtained with only 100 events.

“ %ﬂ% This opens the possibility to perform a full
C it | angular fit analysis with small bins in ¢?
—%?Lﬁ 0‘4 0‘2 E‘) 0}2 0‘4 0.6

The main hypothesis (real WC) can be tested

Figure : Residual distribution of Pg when fitting with measuring P,'CP-
100 events. The fit of a gaussian distribution is
superimosed.
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Independent cross check from " Lattice”: M. Wingate (private communication and preliminary result)
= confirming our result with CVF + C} ~ —1

5.5 210 B° — K% 3.5 10 B — I&'O/l,‘,u, 3.5 210 BO — K%
'’ =00 =10 PR S7  ——
—— binned —— binned —— binned
3.0 @ LHCb 1 3.0 @ LHCb q 3.0 9 LHCb
250 4 2.5 1 2.5
o o e
= 20t 4 = 20 1 = 20
3 3 3
T =y =
=5 = 15 =15
= 15f 4 =15 1 =15
= =2 =2
1ot 4 — 1.0 % 1 1.0
T T T
0.5f 4 0.5 1 0.5
0.0 - 0.0 . 0.0 -
1 15 16 17 1s 19 20 21 22 1415 16 17 18 19 20 21 22 14 15 16 17 1s 19 20 21 22
@2 (GeV)? 2 (GeV)? 72 (GeV)?
40 A0 BT — K*u'tp 10 10 BY - K*u'tp 40 AL BY — K*u'tp
1.5
3.5 3.5
3.0 1 3.0
o ~ 25 1 2.5
e
~. 2.0 '—+—‘ 1 2.0 '—+—‘
=
=
= 1.5 1 1.5
—— i,
1.0 1 1.0 =N
0.5 1 0.5 x
0.0 - 0.0 - 0.0 -
4 15 16 17 1s 19 20 21 22 1415 16 17 18 19 20 21 22 14 15 16 17 1s 19 20 21 22
42 (GoV)? 42 (GeV)? 42 (GeV)?
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The Folding Technique
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HOW to approach experimental data?

@ Full angular distribution: Difficult it requires more data. Possible way using symmetries N.Serra, JM'14,
@ Uniangular distributions: e Integrates out the interesting observables e S-wave polluted in a bad way. JM'12.

@ Breakthrough at LHCb: Substitute uniangular distributions — folded distributions.

A prototypical example: The identification of ¢ <+ ¢ + 7 (for ¢ < 0) produces a “folded” angle be [0, 7]
with 0k, 0, € [0, 7] in terms of which a (folded) differential rate dI'(¢) = dI'(¢) + dI' (¢ — ) is:

1 d*T
[ fun dg? dcos Ok dcos 6 do ~ 167

2F cos? O sin® 0y + = FTsm 0k (3 + cos 26,)

1 . .
+5PiFr sin? O sin® B cos 2¢ + 2P, Fr sin® Ok cos 8y — P3Fysin? Ok sin? @ sin 2| (1 — Fs) +
full

where the S-wave piece is

5(1) _ Wl o 3
M Thn 87

This folded distribution is used to determine P; 5 5. Generalization with lepton masses in [JM'12].

—(Fs + As cos fx) sin? 6,

Advantages of folding:

@ It reduces the # of coefficients (observables) to a manageable experimentally subset.
In thiscase: 11 J+8J =7 J+4J

@ It helps to disentangle the unwanted S-wave pollution due to its distinct angular dependence.
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Proposal for new foldings

e An important remark is that at LHCb P, is obtained in a folding in association with P, 3.
But Py (=AZ2) who is called to play a relevant role in determining the presence of RH currents in
Nature (G} g19) has large error bars.

We propose 3 foldings (second, third and fourth in the list) that can disentangle P; from P; 3.

Obs. S-wave Folding gz@ range
P1,273 As dF(cZ), é/, é\K) —+ dr(q@ -, é/, éK) [O7 7T]

P, Ass, Ass dr($,0,,0k) + dr($,0;, 7 — k) + dT (=, — 01, 0k) + dT (—p, = — b, = — bk) [0, ]
Prand P, A, As dr (o, 0;,0x) + dr (¢, 0, — Ox) + dT(—, 8, 0x) + dT (—, B;, ™ — k) [0, 7]
Prand P3 A, Asr dr (3,0, 0k) + dr(d,0;, 7 — k) + dr (¢, m — 0;,0k) + dT (¢, 7 — 0;, 7 — O) [0, ]

Py and P, Ass dr(,0;,0x) + dr (=, 0;,0x) + dT (¢, 7 — ), 7 — k) + dT (— q“s - 9,, 7 — 0k) [0, ]
Piand P A, Ass dr($,0,,0k) + dr(—,0,,0k) + dT(, = — 01, 0x) + dT (—d, = — 0, eK) [0, ]
Py and P, As, As dr(¢,0,,0x) + dr(x — ¢,0,,0x) + dT (¢, m — 0;,0k) + dT (7 — d, = — 8y, 0k) [-7/2,7/2]
Py and P} Asr dr($,0,,0k) + dr(zx — §,0,,0k) + dT(d, — Oy, m — Ok) + dT (= — P, = 9,,7r—9,<) [—7/2,7/2]

Table : Foldings needed to single out the interesting observables, with the corresponding remaining S-wave
pollution. For all foldings, 8, and Ok lie within [0, /2], whereas ¢ has different ranges depending on the
observables considered.
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S-wave pollution

Joaquim Matias Universitat Autonoma de Barcelona B — K(*);l+/,l_: SM versus New Physics




S-wave pollution

[S. Descotes, T. Hurth, JM, J. Virto'13],  [J.M'12]
@ Another possible source of uncertainty is the S-wave contribution coming from B — K /1/~.
[Becirevic, Tayduganov '13], [Blake et al.'13]
o We will assume that both P and S waves are described by g°-dependent FF times a Breit-Wigner
function.
@ The distinct angular dependence of the S-wave terms in folded distributions allow to disentangle

the signal of the P-wave from the S-wave: Pi(/) can be disentangled from S-wave pollution [Jv'12].

Problem: Changing the normalization used for the distribution from

drs
W =Ty = Ty

introduces a (1 — Fs) in front of the P-wave.
fun =T+ +Ts

and the longitudinal polarization fraction associated to I's is

15 K-
Fs = and 1-Fgs=
rlfull r;‘ull
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The modified distribution including the S-wave and new normalization I, :

1 d*r 9 |3
4

[y dg? dcos Ok dcos O d¢ 32w TSIN® Uk + kL cos” Uk

1 1
+(ZFT sin® 0k — F} cos? 0k) cos 20, + §P1 Frsin® 0k sin? 0, cos 2¢

1

++/F1FL (2Pﬁ sin 20 sin 26, cos ¢ + P sin 20 sin 6, cos qb)
- . . 1, . . .

—v FrFL P6sm29Ksm9/smq§—§P85|n29Ksm29,sm¢

1
Ws
r}ull

+2P,F sin® Ok cos 0 — P3F sin” O sin® 6 sin 24 (1-Fs)+
in the massless case and where the polluting terms are

W
l_/is — % [Fs sin® 0, + As sin? 6 cos Ok + Ag sin O sin 26, cos ¢
full

+Ag sin Ok sin 6y cos ¢ + Ag sinfk sinfysin ¢ + Ag sin O sin 260, sin qﬂ
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We can get bounds on the size of the S-wave polluting terms.Let's take for instance As

1 . .
As =230 /Re (At A" + AGRAE BWic; (i) BW. ()] e,

where

- / /
3 full r full

Y factor included to take into account the width of scalar resonance Kj

Te A/[_2 A/RZ
Fs = 8, _ A lPHIATT, ¢ /dm%(ﬂ_|BWKo*(m%(,T)|2

A bound is obtained once we define the S — P interference integral

2
dmi .

2~ [ |BWis (mic) W ()
and use the bound from the Cauchy-Schwartz inequality

[ ) [ 5 A AT Wi (o BW. ()] i,

< Z |14 P + 1R RIIALR + AR
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From the definitions of Fg and F| and P; one gets the following bound:
As| < 2v3./Fs(1 — Fs)FL ——
As| < s(1—Fs)FL XY

the factor (1 — Fs) in the bound arises due to the fact that Fy is defined with respect to ', rather
than I, .

3 1-Py z
Al < Z./Fs(l—Fs)(1—F ——— ~[0.05-0.11,0.10 — 0.1
||_\/;\/s( $)( L)(2>m [0.05 0.11,0.10 - 0.19]
3 1+ Py z
A3l < 2\/> Fs(1 —Fg)(1—F ( )~o11022011023
|A3] < 2\/s( s)( L) > UXY [ ]

3 1-P\ Z
A7<\/>F1F - — = _ ~[0.11-0.22,0.19 — 0.
AL < 2 2\/5( )1 FL)< . )\/W [0.11 — 0.22,0.19 — 0.38]

\[\/Fsl—Fs 1—FL)(

Large recoil and low recoil ranges with Fs ~ 7%.
Symmetries will add non-trivial correlations [L.Hofer, JM, N.Serra'14]

|AS]

IN

——— ~[0.05-0.11,0.06 — 0.11
)ﬁ [ ]
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