STATUS OF $\left|V_{c b}\right|$ AND $\left|V_{u b}\right|$

PAOLO GAMBINO
UNIVERSITÀ DI TORINO \& INFN

ZPW 2015, ZURICH 8/1/2015

IMPORTANCE OF $\left|V_{c b}\right|$

$V_{c b}$ and $V_{u b}$ play important role in the determination of UT and in the prediction of FGNC:
$\propto\left|V_{t b} V_{t s}\right|^{2} \simeq\left|V_{c b}\right|^{2}\left[1+O\left(\lambda^{2}\right)\right]$
V_{cb} already dominant error in $B_{s} \rightarrow \mu^{+} \mu^{-}, K \rightarrow \pi \nu \nu, \varepsilon_{\kappa}$

Since several years there is a tension between the exclusive and inclusive determinations of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

INCLUSIVE $\left|V_{c b}\right|$

INCLUSIVE DECAYS: BASICS

- Simple idea: inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows to express it in terms of \mathbf{B} meson matrix elements of local operators
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: double series in $\alpha_{\boldsymbol{s}}, \boldsymbol{\Lambda} / \boldsymbol{m}_{\boldsymbol{b}}$
- Lowest order: decay of a free b, linear Λ / m_{b} absent. Depends on $m_{b, c}$, 2 parameters at $\mathrm{O}\left(1 / \mathrm{m}^{2}{ }^{2}\right), 2$ more at $\mathrm{O}\left(1 / \mathrm{m}^{3}{ }^{3}\right) \ldots$

$$
\mu_{\pi}^{2}(\mu)=\frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 M_{B}}\langle B| \bar{b} \frac{i}{2} \sigma_{\mu \nu} G^{\mu v} b|B\rangle_{\mu}
$$

OBSERVABLES IN THE OPE

$$
\begin{aligned}
M= & M_{0}\left[1+c_{1}(r) \frac{\alpha_{s}}{\pi}+c_{2}(r) \frac{\alpha_{s}^{2}}{\pi^{2}}\right. \\
& -\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\left(1+c_{\pi}^{(1)}(r) \frac{\alpha_{s}}{\pi}\right) \\
& +\frac{\mu_{G}^{2}}{m_{b}^{2}}\left(c_{G}^{(0)}(r)+\left(c_{G}^{(1)}(r) \frac{\alpha_{s}}{\pi}\right)\right) \\
& +c_{D}(r) \frac{\rho_{D}^{3}}{m_{b}^{3}}+c_{L S}(r) \frac{\rho_{L S}^{3}}{m_{b}^{3}} \\
& \left.+O\left(\alpha_{s}^{3}, \alpha_{s}^{2} \frac{\Lambda^{2}}{m_{b}^{2}}, \alpha_{s} \frac{\Lambda^{3}}{m_{b}^{3}}, \frac{\Lambda^{4}}{m_{b}^{4}}\right)\right] \\
r & =\frac{m_{c}^{2}}{m_{b}^{2}}
\end{aligned}
$$

OPE valid for inclusive enough measurements, away from perturbative singularities semileptonic width, moments
The fit presented here includes 6 non-pert parameters
$m_{b, c,} \quad \mu_{\pi, G,}^{2} \quad \rho^{3}{ }_{D, L S}$
and all known corrections up to $O\left(\Lambda^{3} / m_{b}{ }^{3}\right)$

EXTRACTION OF THE OPE PARAMETERS

El spectrum

m_{x} spectrum

Global shape parameters (first moments of the distributions) tell us about B structure, m_{b} and m_{c}, total rate about $\left|V_{c b}\right|$

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications (rare decays, $V_{u b, \ldots \text {) }}$

LET'S FOCUS ON:

1. Status of higher order corrections
2. Estimate of residual theoretical errors
3. Additional constraints in the fits

HIGHER ORDER EFFECTS

- Reliability of the method depends on our ability to control higher order effect and quark-hadron duality violations.
- Purely perturbative corrections complete at NNLO, small residual error
- Higher power corrections $O\left(1 / m_{Q}{ }^{4,5}\right)$ known

Mannel,Turczyk,Uraltsev 2010

- Mixed corrections perturbative corrections to power suppressed coefficients completed at $O\left(\alpha_{s} / m_{b}{ }^{2}\right)$ Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG

Higher power Corrections

Mannel,Turczyk,Uraltsev 1009.4622
Proliferation of non-pert parameters and powers of $1 / m_{c}$ starting $1 / m^{5}$. At $1 / m_{b}^{4}$

$$
\begin{aligned}
& 2 M_{B} m_{1}=\left\langle\left((\vec{p})^{2}\right)^{2}\right\rangle \\
& 2 M_{B} m_{2}=g^{2}\left\langle\vec{E}^{2}\right\rangle \\
& 2 M_{B} m_{3}=g^{2}\left\langle\vec{B}^{2}\right\rangle \\
& 2 M_{B} m_{4}=g\langle\vec{p} \cdot \operatorname{rot} \vec{B}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& 2 M_{B} m_{5}=g^{2}\langle\vec{S} \cdot(\vec{E} \times \vec{E})\rangle \\
& 2 M_{B} m_{6}=g^{2}\langle\vec{S} \cdot(\vec{B} \times \vec{B})\rangle \\
& 2 M_{B} m_{7}=g\langle\langle(\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B})\rangle \\
& 2 M_{B} m_{8}=g\left\langle(\vec{S} \cdot \vec{B})(\vec{p})^{2}\right\rangle \\
& 2 M_{B} m_{9}=g\langle\Delta(\vec{\sigma} \cdot \vec{B})\rangle
\end{aligned}
$$

can be estimated by Lowest Lying State Saturation approx by truncating

In LLSA good convergence of the HQE. First fit with $1 / \mathrm{m}^{4,5}$:

$$
\langle B| O_{1} O_{2}|B\rangle=\sum_{n}\langle B| O_{1}|n\rangle\langle n| O_{2}|B\rangle
$$

Heinonen, Mannel 1407.4384 have more systematic approach
LLSA might set the scale of effect, not yet clear how much it depends on assumptions on expectation values. Large corrections to LLSA have been found.

Mannel, Uraltsev, PG, 2012
Allowing 80\% gaussian deviations from LLSA seem to leave V_{cb} unaffected.

MATCHING AT $O\left(\alpha_{s}\right)$

Taylor expansion around on-shell b quark matched onto HQET local operators. Analytic formulae. RPI relations reproduced. Unlike $\mu_{\pi}, \mu_{\boldsymbol{G}}$ gets renormalized, therefore Wilson coefficients scale-dependent.

NUMERICAL RESULTS

In on-shell scheme ($m_{b}=4.6 \mathrm{GeV}, m_{c}=1.15 \mathrm{GeV}$) without cuts

$$
\begin{aligned}
& \Gamma_{B \rightarrow X_{c} \ell \nu}=\Gamma_{0}\left[\left(1-1.78 \frac{\alpha_{s}}{\pi}\right)\left(1-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right)-\left(1.94+2.42 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}\right] \\
& \left\langle E_{\ell}\right\rangle=1.41 \mathrm{GeV}\left[\left(1-0.02 \frac{\alpha_{s}}{\pi}\right)\left(1+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right)-\left(1.19+4.20 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}\right] \\
& \ell_{2}=0.183 \mathrm{GeV}^{2}\left[1-0.16 \frac{\alpha_{s}}{\pi}+\left(4.98-0.37 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}-\left(2.89+8.44 \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}\right]
\end{aligned}
$$

Similar results in the kinetic scheme. NLO corrections generally $0(15-20 \%)$ of tree level coefficients, shifts in some cases larger than experimental error. Impact on $V_{c b}$ requires new fit of semileptonic moments.

Mannel, Pivovarov, Rosenthal (1405.5072) have computed the μ_{G} correction to the width in the limit $\mathrm{m}_{\mathrm{c}}=0$ and find compatible result.

New Contributions $\mathcal{O}\left(\alpha_{s} / m_{b}^{2}\right)$:

	$\mathbf{O}\left[\Lambda^{2} / m_{b}^{2}\right]$
	$\mathbf{O}\left[\Lambda^{3} / m_{b}^{3}\right]$
	$\mathbf{O}\left[\alpha_{s} / \pi\right]$
	$\mathbf{O}\left[\left(\alpha_{s} / \pi\right)^{2}\right]$
	$\mathbf{O}\left[\alpha_{s} / m_{b}^{2}\right]$

R

Kristopher J. Healey

ICHEP2014

THEORETICAL ERRORS

Theoretical errors are generally the dominant ones in the fits. We estimate them in a conservative way by mimicking higher orders varying the parameters by fixed amounts.
Duality violation, expected here to be suppressed, would manifest as inconsistency in the fit.

THEORETICAL CORRELATIONS

Correlations between theory errors of moments with different cuts difficult to estimate

1. 100% correlations (unrealistic but used previously)
$m_{c}{ }^{\mathrm{MS}}(3 \mathrm{GeV})$
2. corr. computed from low-order expressions

Schwanda, PG 2013
3. constant factor $0<\xi<1$ for 100 MeV step
4. same as 3 . but larger for larger cuts always assume different central moments uncorrelated

THEORETICAL CORRELATIONS

Schwanda, PG 2013

NEW SEMILEPTONIC FIT

- updates the fit in Schwanda, PG, 1307.4551
- kinetic scheme calculation based on 1107.3100; hep-ph/0401063
- NNLO partonic: it includes all $O\left(\alpha_{s}^{2}\right)$ corrections Czarnecki, Pak, Melnikov, Biswas, PG
- includes new $O\left(\alpha_{s} / m_{b}{ }^{2}\right)$ complete corrections, not the $\mathrm{O}\left(1 / \mathrm{mQ}^{4,5}\right)$
- reassessment of theoretical errors, realistic correlations
- external constraints: precise heavy quark mass determinations, mild constraints on $\mu^{2}{ }_{G}$ from hyperfine splitting and $Q^{3}{ }_{L S}$ from sum rules

Previous global fits: Buchmuller, Flaecher hep-ph/0507253, Bauer et al, hep-ph/0408002 (1S scheme)

CHARM MASS DETERMINATIONS

Remarkable improvement in recent years.
m_{c} can be used as precise input to fix m_{b} instead of radiative moments

FIT RESULTS

NEW 1411.6560

$m_{b}^{k i n}$	$\bar{m}_{c}(3 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

Schwanda PG 2013

$m_{b}^{\text {kin }}$	$m_{c}^{(3 \mathrm{GeV})} \mu_{\pi}^{2}$		ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}(\%)$	$10^{3}\left\|V_{c b}\right\|$
4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86

Without mass constraints $m_{b}^{k i n}(1 \mathrm{GeV})-0.85 \bar{m}_{c}(3 \mathrm{GeV})=3.714 \pm 0.018 \mathrm{GeV}$

- results depend little on assumption for correlations and choice of inputs, 2% determination of V_{cb}
- 20-30\% determination of the OPE parameters

RESULTS: BOTTOM MASS

The fits give $\boldsymbol{m}_{\boldsymbol{b}}{ }^{\boldsymbol{k i n}}(\mathbf{1} \mathbf{G e V})=\mathbf{4 . 5 5 3}(\mathbf{2 0}) \mathbf{G e V}$, independent of th corr. scheme translation error $m_{b}^{k i n}(1 \mathrm{GeV})=m_{b}\left(m_{b}\right)+0.37(3) \mathrm{GeV}$ $\boldsymbol{m}_{b}\left(\boldsymbol{m}_{b}\right)=4.183(37) \mathrm{GeV}$

FURTHER CHECKS

Dependence on strong coupling scale

Dependence on kinetic cutoffs on bottom and charm masses

EXCLUSIVE DECAY $B \rightarrow D^{*} \ell$

At zero recoil, where rate vanishes, the ff is

$$
\mathcal{F}(1)=\eta_{A}\left[1+O\left(\frac{1}{m_{c}^{2}}\right)+\ldots\right]
$$

Recent progress in measurement of slopes and shape parameters, exp error only ~1.3\%
The ff $F(I)$ cannot be experimentally determined. Lattice QCD is the best hope to compute it. Only one unquenched Lattice calculation:

$$
F(I)=0.906(13) \quad\left|\mathrm{V}_{\mathrm{cb}}\right|=39.04(49)_{\exp }(53)_{\operatorname{lat}}(19)_{\text {QED }} 10^{-3}
$$

Bailey et al I403.0635 (FNAL/MILC)

I.9\% error (adding in quadrature)

~2.9 $\mathbf{\sigma}$ or $\mathbf{\sim} \mathbf{8 \%}$ from inclusive determination
$B \rightarrow$ Dlv has larger errors: new $\left|\mathrm{V}_{c b}\right|=38.5(2.0) \times \mid 0^{-3}$
at non-zero recoil! Qiu et al, 1312.0155

COMMENTS ON $V_{c b}$

- Heavy quark sum rules (with BPS arguments) favor smaller $F(1)=0.86(2)$ leading to agreement with inclusive. Difficult to improve, how good is BPS limit?
- Extrapolations to zero recoil by exp. coll. use Caprini et al parameterization, based on NLO HQET, and do not include a 2% uncertainty. Only 2 parameters, fits well exp data but rigid in low recoil region. Lattice simulations at non zero recoil under way.
- Matching at $1 / \mathrm{mQ}^{3}$ for lattice discretization effects under study by FNAL/MILC. Other collaborations working on $B \rightarrow D^{*} f f$.
- Indirect $\left|\mathbf{V}_{\mathbf{c b}}\right|$ determinations assuming SM+unitarity CKM: UTFit 42.05(65) 10^{-3} CKMFitter 41.4 ${ }^{+2.4}{ }_{-1.4} 10^{-3}$

Babar form factor shape from 0705.4008

$V_{c b}$ VISUAL SUMMARY

Latest lattice results for exclusives (FNAL/MILC)

HQSR,HQE for exclusives Mannel, Uraltsev, PG

NEW PHYSICS?

The difference with FNAL/MILC is quite large: 3σ or about 8%.
The perturbative corrections to inclusive V_{cb} total 5%, the power corrections about 4%.

Right Handed currents disfavored since

$$
\begin{array}{lr}
\left|V_{c b}\right|_{\text {incl }} \simeq\left|V_{c b}\right|\left(1+\frac{1}{2}|\delta|^{2}\right) & \text { Chen,Nam,Crivellin,Buras,Gemmlc } \\
\left|V_{c b}\right|_{B \rightarrow D^{*}} \simeq\left|V_{c b}\right|(1-\delta) & \delta=\epsilon_{R} \frac{\tilde{V}_{c b}}{V_{c b}} \approx 0.08 \\
\left|V_{c b}\right|_{B \rightarrow D} \simeq\left|V_{c b}\right|(1+\delta) &
\end{array}
$$

Most general SU(2) invariant dim 6 NP (without RH neutrino) can explain results, but it is incompatible with $Z \rightarrow \bar{b}$ data

THE TOTAL $B \rightarrow X_{u} \ell v$ WIDTH

$$
\begin{aligned}
& \Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]=\left.\frac{G_{E}^{2} m_{b}^{5}}{192 \pi^{3}} T_{u b}\right|^{2}\left[1+\frac{\alpha_{s}}{\pi} p_{u}^{(1)}(\mu)+\frac{\alpha_{s}^{2}}{\pi^{2}} p_{u}^{(2)}(r, \mu)-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}-\frac{3 \mu_{G}^{2}}{2 m_{b}^{2}}\right. \\
& \left.+\left(\frac{77}{6}+8 \ln \frac{\mu_{\mathrm{WA}}^{2}}{m_{b}^{2}}\right) \frac{\rho_{D}^{3}}{m_{b}^{3}}+\frac{3 \rho_{L S}^{3}}{2 m_{b}^{3}}+\frac{32 \pi^{2}}{m_{b}^{3}} B_{\mathrm{WA}}\left(\mu_{\mathrm{WA}}\right)\right] \\
& \begin{array}{l}
+O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right)^{\prime} \cdot \\
\text { e fit, } \mathrm{V}_{\mathrm{ub}}
\end{array} \\
& \text { Using the results of the fit, } \mathrm{V}_{\mathrm{ub}} \\
& \text { could be extracted if we had the } \\
& \text { total width... }
\end{aligned}
$$

Weak Annihilation, severely constrained from D decays, see Kamenik, PG, arXiv:1004.0114

THE PROBLEMS WITH CUTS

Experiments often use kinematic cuts to avoid the $\sim 100 \mathrm{x}$ larger $\mathrm{b} \rightarrow \mathrm{cl} v$ background:

$$
\mathrm{m}_{\mathrm{X}}<\mathrm{M}_{\mathrm{D}} \quad \mathrm{E}_{1}>\left(\mathrm{M}_{\mathrm{B}}^{2}-\mathrm{M}_{\mathrm{D}}^{2}\right) / 2 \mathrm{M}_{\mathrm{B}} \quad \mathrm{q}^{2}>\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{D}}\right)^{2} \ldots
$$

The cuts destroy convergence of the OPE that works so well in $b \rightarrow c$. OPE expected to work only away from pert singularities

Rate becomes sensitive to local b-quark wave function properties like Fermi motion. Dominant nonpert contributions can be resummed into a SHAPE FUNCTION $\mathrm{f}(\mathrm{k}+$).
Equivalently the SF is seen to emerge from soft gluon resummation

HOW TO ACCESS THE SF?

$$
\frac{d^{3} \Gamma}{d p_{+} d p_{-} d E_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3}} \int d k C\left(E_{\ell}, p_{+}, p_{-}, k\right) F(k)+O\left(\frac{\Lambda}{m_{b}}\right)
$$ Subleading SFs

Prediction based on resummed pQCD	OPE constraints + parameterization without/with resummation GGOU, BLNP
Fit radiative data (and b \rightarrow ulv)	
SIMBA	

FUNCTIONAL FORMS

About 100 forms considered in GGOU, large variety, double max discarded. Small uncertainty

$$
(1-2 \%) \text { on } V_{u b}
$$

A more systematic method by Ligeti et al. arXiv:0807.1926 Plot shows 9 SFs that satisfy all the first three moments

A GLOBAL COMPARISON

* common inputs (except ADFR)
* Overall good agreement SPREAD WITHIN THEORY ERRORS
* NNLO BLNP still missing: will push it up a bit
* Systematic offset of central values: normalization? to be investigated
only theory errors
(without common parametric)

$V_{u b}$ IN THE GGOU APPROACH

PG,Giordano,Ossola,Uraltsev

Good consistency \& small th error.
5\% total error
strong dependence on m_{b}
Recent experimental results

$\left|V_{u b}\right|$ DETERMINATIONS

Inclusive: 4-5\% total error

HFAG 2012	Average $\left\|\mathrm{V}_{\mathrm{ub}}\right\| \mathrm{x} 10^{3}$
DGE	$4.45(15)_{\mathrm{ex}}{ }^{+15}{ }_{-16}$
BLNP	$4.40(15)_{\mathrm{ex}}{ }^{+19}-21$
GGOU	$4.39(15)_{\mathrm{ex}}{ }^{+12}{ }_{-14}$

$2.7-3 \sigma \mathrm{fr} \mathrm{mm} B \rightarrow \pi \mathrm{lv}$ (MILC-FNAL)
 2σ from $\beta \rightarrow \pi l v$ (LCSR, Siegen)
 2.5-3o rom UTFit 2014

Exclusive: 10-15\% total error

$$
\begin{gathered}
\left|V_{u b}\right|=(3.25 \pm 0.31) \times 10^{-3} \\
\text { Fermilab/MILC } \\
\left|V_{u b}\right|=\left(\left.3.50_{-0.33}^{+0.33}\right|_{t h .} \pm\left. 0.11\right|_{\text {exp. }}\right) \times 10^{-3}
\end{gathered}
$$

LCSR, Khodjamirian et al, see also Bharucha NB B $\rightarrow \pi l \boldsymbol{v}$ data poorly consistent!

UT fit (without direct V_{ub}):

$$
V_{u b}=3.62(12) 10^{-3}
$$

The discrepancy here is around 25% !!

NEW FNAL/MILC RESULTS

1411.6038

Only 4\% error! combined exp+lat fit has p-value $=0.02$, large shift wrt previous FNAL, 2.4 6 from inclusive

SUMMARY

- Improvements of OPE approach to semileptonic decays continue. All effects $O\left(\alpha_{s} \Lambda^{2} / m_{b}{ }^{2}\right)$ implemented. No sign of inconsistency in this approach so far, competitive \boldsymbol{m}_{b} determination.
Calculation of $O\left(\alpha_{s} \Lambda^{3} / m_{b}{ }^{3}\right)$ effects ongoing, work on higher power corrections.
- Exclusive/incl. tension in $V_{c b}$ remains large and mysterious (3σ, 8%). It cannot be explained by right-handed current and in general by $\mathrm{SU}(2)$-invariant new physics.
- Exclusive/incl tension in $V_{u b}$ slightly receding because of new FNAL/MILC result. New physics explanations less constrained than for $V_{c b}$
- Belle-II will improve precision and allow for checks of consistency of various methods. Dedicated workshop at MITP on April 20-24.

BACK-UP SLIDES

(SEMI)LEPTONIC DECAYS TO τ

- $f_{B} \cdot V_{u b}$ can also be extracted in the SM from $B \rightarrow \tau v$, a rare decay mode measured at the B factories, which presently tends to prefer a high $V_{u b}$
- In the case of tau leptons charged scalars (eg from an extended Higgs sector) can contribute at tree-level. These decays are therefore sensitive probes of this New Physics.
- Recently BaBar measured \mathcal{R} finding 2-3 0 excess over the SM in both D and D*.

$$
\mathcal{R}\left(D^{(*)}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} l^{-} \bar{\nu}_{l}\right)}
$$

Hard to find a NP model that can explain this result

SF FROM PERTURBATION THEORY

Resummed perturbation theory is qualitatively different: Support properties; stability! (E. Gardi)
b quark SF emerges from resummed $p Q C D$ but needs an IR prescription and power corrections for $\mathbf{b} \rightarrow \mathbf{B}$

Dressed Gluon Exponentiation (DGE) by Gardi et al employs renormalon resummation to define Fermi motion.
Power corrections can be partly accomodated.

Aglietti et al (ADFR) use Analytic Coupling in the IR, a model

THE SF IN THE OPE

Local OPE has also threshold singularities and SF can be equivalently introduced resumming dominant singularities Bigi et al, Neubert

Fermi motion can be parameterized within the OPE like PDFs in DIS. At leading order in mb only a single universal function of one parameter enters (SF).

Unlike resummed $p Q C D$, the OPE does not predict the SF, only its first few moments. One then needs an ansatz for its functional form.

$$
\begin{gathered}
\int d k_{+} k_{+}^{n} F_{i}\left(k_{+}, q^{2}\right)=\text { local OPE prediction } \Leftarrow \text { moments fits } \\
\text { Two very different implementations: } \\
P G, \text { Giordano, Ossola, Uraltsev (GGOU) } \\
\text { Bosch,Lampe,Neubert,Paz (BLNP) }
\end{gathered}
$$

$O\left(\alpha_{s} / m_{b}^{2}\right)$ EFFECTS

Hadronic tensor $\quad W^{\alpha \beta}=\frac{(2 \pi)^{3}}{2 m_{B}} \sum_{X_{c}} \delta^{4}\left(p_{b}-q-p_{X}\right)\langle\bar{B}| J_{L}^{\dagger \alpha}\left|X_{c}\right\rangle\left\langle X_{c}\right| J_{L}^{\beta}|\bar{B}\rangle$

$$
m_{b} W^{\alpha \beta}=-W_{1} g^{\alpha \beta}+W_{2} v^{\alpha} v^{\beta}+i W_{3} \epsilon^{\alpha \beta \rho \sigma} v_{\rho} \hat{q}_{\sigma}+W_{4} \hat{q}^{\alpha} \hat{q}^{\beta}+W_{5}\left(v^{\alpha} \hat{q}^{\beta}+v^{\beta} \hat{q}^{\beta}\right)
$$

$W_{i}=W_{i}^{(0)}+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}} W_{i}^{(\pi, 0)}+\frac{\mu_{G}^{2}}{2 m_{b}^{2}} W_{i}^{(G, 0)}+\frac{C_{F} \alpha_{s}}{\pi}\left[W_{i}^{(1)}+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}} W_{i}^{(\pi, 1)}+\frac{\mu_{G}^{2}}{2 m_{b}^{2}} W_{i}^{(G, 1)}\right]$
$W_{i}(\pi, n)$ can be computed using reparameterization invariance which relates different orders in the HQET: e.g. for $i=3$ at all orders

$$
\begin{equation*}
W_{3}^{(\pi, n)}=\frac{5}{3} \hat{q}_{0} \frac{d W_{3}^{(n)}}{d \hat{q}_{0}}-\frac{\hat{q}^{2}-\hat{q}_{0}^{2}}{3} \frac{d^{2} W_{3}^{(n)}}{d \hat{q}_{0}^{2}} \tag{Manohar 2010}
\end{equation*}
$$

Proliferation of power divergences, up to $1 / u^{3}$, and complex kinematics $\left(q^{2}, q_{0}, m_{c} m_{b}\right) \mathrm{W}_{\mathrm{i}}{ }^{(\mathrm{G}, 1)}$ requires proper matching.

PERTURBATIVE EFFECTS

- $\mathrm{O}\left(\alpha_{s}\right)$ implemented by all groups De Fazio,Neubert
- Running coupling $\mathrm{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ (pg,Gardi,Ridolfi) in GGOU, DGE lead to $-5 \% \&+2 \%$, resp. in $\left|V_{\mathrm{ub}}\right|$
- Complete $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ in the SF region Asartian,Greub,Peciak-Bonciani,Ferroglia-Beneke,Huber, Li- G . Bell 2008
- In BLNP leads to up 8% increase in $V_{b b}$ related to resummation, not yet included by HFAG. It is an artefact of this approach.
- $P_{+}<0.66 \mathrm{GeV}:$

	$\Gamma_{u}^{(0)}$	μ_{h}	μ_{i}
NLO	60.37	${ }_{-3.37}^{+3.52}$	${ }_{-6.67}^{+3.81}$
NNLO	52.92	${ }_{-1.72}^{+1.46}$	${ }_{-2.79}^{+0.09}$

Greub,Neubert,Pecjak arXiv:0909.1609

- $P_{+}<0.66 \mathrm{GeV}$:

Fixed-Order	$\Gamma_{u}^{(0)}$	μ
NLO	49.11	${ }_{-9.41}^{+5.43}$
NNLO	49.53	${ }_{-4.01}^{+0.13}$

NEW: full phase space $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ calculation
Brucherseifer,Caola,Melnikov, arXiv:1302.0444
Confirms non-BLM/BLM approx 20\% over relevant phase space

μ_{G}^{2}-SCALE DEPENDENCE

Relative NLO correction to the coefficients of μ_{G} in the width (blue), first (red) and second central (yellow) leptonic moments as a function of the renormalization scale. Smaller corrections for smaller scale.

