Off-shell effects and signal-background interference in Higgs physics

Nikolas Kauer Royal Holloway, University of London

SM@LHC 2015 Galileo Galilei Institute for Theoretical Physics, Florence, Italy April 22, 2015

Outline

- $H \rightarrow ZZ, WW$ in ggF & VBF: sizeable off-shell Higgs signal contribution with large signal-backg. interference
- $H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ and $ZZ \to 4\ell$ interference in ggF
- Interference effects for semileptonic decay modes
- Interference for $pp \to H \to ZZ$ + jet
- Precision predictions for $gg (\rightarrow H) \rightarrow VV$ interference/bkg.
- Higgs width measurement in a nutshell
- Off-shell Higgs boson signal strength & novel Higgs width bound, "pioneering" ATLAS & CMS analyses
- BSM/EFT: exploiting the off-shell $H \rightarrow VV$ region
- BSM: model dependence of the off-shell Higgs width bound
- Higgs width constraints from $gg \to H \to \gamma\gamma$
- BSM: heavy Higgs-light Higgs-bkg. interference effects
- Higgs width/coupling constraints including LEP EW PO
- Off-shell $H \rightarrow VV$ signal at a linear collider
- Summary

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

SM Higgs boson production and decay at the LHC

$gg \rightarrow H \rightarrow ZZ, WW$: sizeable off-shell Higgs signal with large signal-background interference

• $gg \rightarrow H \rightarrow VV \rightarrow 4\ell$ and $2\ell 2\nu$ signal-background interference very well studied at LO: Glover, van der Bij (1989); Kao, Dicus (1991); Binoth, Ciccolini, NK, Krämer (2006) (gg2WW); Campbell, Ellis, Williams (2011) (MCFM); NK (2012) (gg2VV); NK, Passarino (2012); Campanario, Li, Rauch, Spira (2012); Bonvini, Caola, Forte, Melnikov, Ridolfi (2013); Caola, Melnikov (2013); NK (2013) (gg2VV); Campbell, Ellis, Williams (2013) (MCFM); Campbell, Ellis, Williams (2014) (MCFM); Campbell, Ellis, Furlan, Röntsch (2014); related interference effects: Bredenstein, Denner, Dittmaier, Weber (2006) (PROPHECY4f); YR3: Denner, Dittmaier, Mück (2013) and Anderson, Bolognesi, Caola, Gao, Gritsan, Martin, Melnikov, Schulze, Tran, Whitbeck, Zhou (2013); Chen, Cheng, Gainer, Korytov, Matchev, Milenovic, Mitselmakher, Park, Rinkevicius, Snowball (2013); Chen, Vega-Morales (2013)

- tools for ggF: MCFM-6.8, gg2VV-3.1.7 (gg → VV parton-calculators and LO event generators), MadGraph5, Sherpa+OpenLoops (allows for merging of gg → VV + {0, 1} jets)
- loop technology closing in on NLO calculation (see below) Karlsruhe, Zurich, FNAL-RWTH, ...
- gluon-fusion Higgs production and semileptonic decay: Dobrescu, Lykken (2010); Lykken, Martin, Winter (2012); Kao, Sayre (2012); ATLAS arXiv:1206.2443; ATLAS arXiv:1206.6074; CMS PAS HIG-13-008

Sizeable off-shell Higgs signal in vector boson fusion

- similar effect in VBF $H \to VV$ (NK, Passarino): $\mathcal{O}(10\%)$ of Higgs signal is off-shell note: no exp. sensitivity to off-shell $H \to VV$ tail in VH and $t\bar{t}H$ channels (see $\sigma_{\text{prod}}(M_H)$)
- total off-shell Higgs signal has $\sim 10\%~{\rm VBF}$ contribution

Covarelli, Anderson, Sarica

figures taken from Covarelli's talk at LHC HXSWG workshop (12 Jun 2014)

• tools for VBF: MadGraph5 Alwall et al., Phantom Ballestrero et al., VBFNLO Baglio et al., Sherpa+OpenLoops Cascioli et al.

$gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ interference (gg2VV)

Integrated	d cross sections	(SM Higgs)
------------	------------------	------------

	$gg (\rightarrow)$	$H) \rightarrow VV \rightarrow$	$\ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell},$			
	σ [ft	o], pp , $\sqrt{s} = 8$	TeV,			
	$M_H = 126$ GeV, min. cuts,					
	$\mu_R =$	$\mu_F = M_{\ell \bar{\nu}_{\ell}}$	$\bar{\ell}\nu_{\ell}/2$	interference		
VV	Н	cont	$ H+cont ^2$	$R_1 = (S+B+I)/(S+B)$	$R_2 = (S+I)/S$	
WW	17.318(4)	16.925(4)	32.803(8)	0.9580(3)	0.9169(6)	
ZZ	0.8822(2)	2.1553(6)	2.872(1)	0.9455(4)	0.813(2)	
WW/ZZ	17.402(3)	19.084(4)	34.884(7)	0.9561(3)	0.9079(5)	
R_3	0.9562(3)	1.0002(3)	0.9778(3)	$\sigma(WW + ZZ ^2)/\sigma$	$(WW ^2 + ZZ ^2)$	
R_4	0.9540(3)	1.0002(4)	0.9759(4)	$(\sigma(WW ^2) + I_{WW})$	$_{W/ZZ})/\sigma(WW ^2)$	
R_6	0.05094(2)	0.12735(5)	0.08756(4)	$\sigma(ZZ ^2)/c$	$\sigma(WW ^2)$	

minimal cuts: WW/ZZ interference: Higgs signal: ≈5%, gg continuum: negligible

Differential cross sections

 $\begin{array}{l} gg \rightarrow WW/ZZ \mbox{ continuum: } M_{VV} \mbox{ distribution} \\ M_{VV} > 95 \mbox{ GeV: } WW/ZZ \mbox{ interference negligible} \\ M_{VV} < 95 \mbox{ GeV: } WW/ZZ \mbox{ interference of } \approx 5\% \end{array}$

see also: $H \rightarrow WW/ZZ \rightarrow$ $\ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ interference at LO & NLO Mück, Bredenstein, Denner, Dittmaier, Weber YR3 arXiv:1307.1347, Sec. 2.2

N. Kauer

Off-shell effects and signal-background interference in Higgs physics SM@LHC :

I@LHC 2015, Florer

22 Apr 2015 6 / 4

$gg \rightarrow H \rightarrow WW/ZZ \rightarrow \ell \bar{\nu}_{\ell} \ell \nu_{\ell}$ interference (gg2VV)

Integrated cross sections (SM Higgs with Higgs search cuts)

	$gg (\rightarrow$				
	σ [fb], pp , $\sqrt{s} = 8$ T	ēV,		
	Λ	$M_H = 126 \text{ GeV}$,		
	н	iggs search cut	6	interfe	erence
VV	Н	R_1	R_2		
WW	2.9303(7) 0.7836(4)		3.6649(8)	0.9868(4)	0.9833(4)
ZZ	0.004658(3) 0.002851(2)		0.007494(3)	0.9979(6)	0.9966(9)
WW/ZZ	2.8758(7) 0.7864(4) 3.613			0.9866(3)	0.9829(4)
R_3	0.9799(4)	0.9999(8)	0.9839(3)		
R_4	0.9798(4)	0.9999(8)	0.9838(3)		
R_6	0.0015898(9)				

Cuts: $p_{T\ell,1\text{st}} > 25 \text{ GeV}, p_{T\ell,2\text{nd}} > 15 \text{ GeV}, |\eta_{\ell}| < 2.5, p_T > 45 \text{ GeV}, M_{\ell\bar{\ell}} > 12 \text{ GeV}, |M_{\ell\bar{\ell}} - M_Z| > 15 \text{ GeV}, M_{\ell\bar{\ell}} < 50 \text{ GeV}, \Delta \phi_{\ell\bar{\ell}} < 1.8, 0.75 M_H < M_{T1} < M_H$

 $M_{T1} = \sqrt{(M_{T,\ell\bar{\ell}} + \not\!\!\! p_T)^2 - (\mathbf{p}_{T,\ell\bar{\ell}} + \not\!\!\! p_T)^2} \quad \text{with} \quad M_{T,\ell\bar{\ell}} = \sqrt{p_{T,\ell\bar{\ell}}^2 + M_{\ell\bar{\ell}}^2}$

NK arXiv:1310.7011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$gg \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ interference (MCFM)

Campbell, R.K. Ellis, Williams figures taken from arXiv:1408.1723

Note: full $ZZ \rightarrow 4\ell$ interference effects are also implemented in gg2VV

э

$gg \rightarrow H \rightarrow WW/ZZ \rightarrow \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ interference (MCFM)

Campbell, R.K. Ellis, Williams figures taken from arXiv:1408.1723

Interference for semileptonic H decay modes in ggF

 $\mathcal{M} = \mathcal{M}_{\mathit{signal}} \; (\text{LO}) \; + \mathcal{M}_{\mathit{background}} = \mathcal{M}_{\mathit{signal}} + \mathcal{M}_{\mathit{loop}} + \mathcal{M}_{\mathit{tree}}$

Notation for amplitude contributions to cross sections:

$$\begin{split} S &\sim |\mathcal{M}_{signal}|^2 \\ I_{tree} &\sim 2 \operatorname{Re}(\mathcal{M}^*_{signal} \, \mathcal{M}_{tree}) \\ I_{loop} &\sim 2 \operatorname{Re}(\mathcal{M}^*_{signal} \, \mathcal{M}_{loop}) \\ I_{full} &\sim 2 \operatorname{Re}(\mathcal{M}^*_{signal} \, \mathcal{M}_{background}) \end{split}$$

 \mathcal{M}_{loop} contains all closed quark loop graphs. (NLO EW corrections to I_{tree} not included.)

relative measure for interf. with bkg. i:

$$R_{i} = \frac{\sigma(|\mathcal{M}_{signal}|^{2} + 2\operatorname{Re}(\mathcal{M}_{signal}^{*}\mathcal{M}_{i}))}{\sigma(|\mathcal{M}_{signal}|^{2})}$$

Interference for semileptonic H decay modes in ggF

$gg \rightarrow$	$H \to ZZ \to \ell \bar{\ell} q_u \bar{q}_u$						
σ [fb], $pp, \sqrt{s} = 8 \text{ TeV}$		interference			ratio		
cuts	S	Itree	I_{loop}	I_{full}	R_{tree}	R_{loop}	R_{full}
min.	1.96(1)	-0.190(4)	-0.343(3)	-0.541(5)	0.903(7)	0.825(7)	0.724(7)
LHC	0.1166(6)	0.017(2)	-0.194(2)	-0.176(6)	1.15(2)	-0.67(2)	-0.51(5)
bkg.	1.342(7)	-0.0012(2)	-0.0882(9)	-0.0892(9)	0.999(7)	0.934(7)	0.934(7)

$gg \rightarrow$	$H \to ZZ \to \ell \bar{\ell} q_d \bar{q}_d$						
σ [fb], $pp, \sqrt{s} = 8 \text{ TeV}$		interference			ratio		
cuts	S	Itree	Iloop	I_{full}	R_{tree}	R_{loop}	R_{full}
min.	2.51(2)	-0.248(3)	-0.439(6)	-0.680(7)	0.901(7)	0.825(7)	0.729(7)
LHC	0.1497(8)	0.0223(6)	-0.245(5)	-0.227(3)	1.149(9)	-0.64(3)	-0.52(2)
bkg.	1.720(9)	-0.00130(5)	-0.113(1)	-0.114(1)	0.999(7)	0.934(7)	0.934(7)

NK, C. O'Brien, E. Vryonidou (gg2VV and MG5_aMC@NLO)

N. Kauer Off-shell effects and signal-background interference in Higgs physics SM@LHC 2015, Florence 22 Apr 2015 11 /

Interference for semileptonic H decay modes in ggF

NK, C. O'Brien, E. Vryonidou

• • • • • • • • •

3 🕨 🖌 3

Interference for $pp \rightarrow H \rightarrow ZZ$ + jet

off-shell Higgs cross sections for ZZ and ZZ+jet comparable ($p_{Tj} > 30$ GeV) Campbell, R.K. Ellis, Furlan, Röntsch figures taken from arXiv:1409.1897 Z bosons treated in zero-width approximation (validated for ZZ final state: excellent for $m_{4l} > 300$ GeV)

Precision predictions for $gg (\rightarrow H) \rightarrow VV$ signal-background interference

Signal: $gg \rightarrow H$ cross section at NLO QCD with finite t and b mass effects (important for off-shell Higgs with $M_{VV} \gtrsim 2M_t$: 5–10% correction) (scale uncertainty: 10–15%) Djouadi, Spira, Zerwas, Graudenz (1991-1995); N³LO in soft expansion with $M_t \rightarrow \infty$ (scale uncertainty $\approx 3\%$) C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger arXiv:1503.06056; NLO EW corrections important for off-shell Higgs (8% at $M_{VV} \sim 500$ GeV) A. Bredenstein, A. Denner, S. Dittmaier, M. Weber arXiv:hep-ph/0604011 (also arXiv:1111.6395)

Background: $pp \rightarrow ZZ$ and $pp \rightarrow WW$ at NNLO QCD with massless quarks (scale uncertainty $\approx 3\%$), F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhofer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, E. Weihs arXiv:1405.2219 and T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhofer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi arXiv:1408.5243 $qq \rightarrow VV$ enters $pp \rightarrow VV$ at NNLO QCD \rightarrow LO (loop-induced) with $\sim 20-25\%$ scale uncer-

tainty, unknown NLO K-factor, but expected to be similar to signal, i.e. ~ 1.6

11–17% (9–12%) NNLO correction to $pp \rightarrow ZZ$ (WW) for $\sqrt{s} = 7$ –14 TeV

 $gg \rightarrow VV$ contributes to full NNLO correction with 60% (35%) for $pp \rightarrow ZZ$ (WW)

 \rightarrow NLO $gg \rightarrow VV$ correction is of similar size or larger than residual $pp \rightarrow VV$ scale uncertainty \Rightarrow calculation is important and by a similar argument the calculation of the NLO correction to signal-background interference

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇ ◇

Precision predictions for $gg (\rightarrow H) \rightarrow VV$ signal-background interference

Work towards $gg (\rightarrow H) \rightarrow VV$ signal-background interference and $gg \rightarrow VV$ continuum background beyond leading order:

M. Bonvini, F. Caola, S. Forte, K. Melnikov, G. Ridolfi arXiv:1304.3053:

NLO and NNLO calculation for $gg (\rightarrow H) \rightarrow WW \rightarrow \ell \nu \ell \nu$ interference with $M_H = 600 \text{ GeV}$ in soft-gluon approximation (very good accuracy for inclusive signal cross section)

 \rightarrow interference K-factors are generally very similar to signal K-factors (also for kinematic distributions)

C. Li, H. Li, D. Shao, J. Wang arXiv:1504.02388:

Soft gluon resummation to all orders for $gg~(\to H) \to ZZ \to \ell\ell\ell'\ell'$ interference, 100 GeV $< M_{ZZ} < 1000$ GeV, effects signal like

Technical bottleneck for unapproximated $gg \rightarrow VV$ calc. at NLO: two-loop virtual corrections

Two-loop $gg \rightarrow VV \rightarrow 4$ leptons amplitudes with massless quarks calculated by two groups:

F. Caola, J. Henn, K. Melnikov, A. Smirnov, V. Smirnov arXiv:1503.08759

A. v. Manteuffel, L. Tancredi arXiv:1503.08835

Calculation of NLO $gg \rightarrow ZZ$ cross section in model where Z bosons only couple to t quarks in s/M_t^2 expansion (LO) yields K-factor of 1.5–2 for 180 GeV $< M_{ZZ} < 340$ GeV (LO QCD comparison with exact $M_t: M_t \rightarrow \infty$ poor for $M_{ZZ} \gtrsim 300$ GeV) K. Melnikov, M. Dowling arXiv:1503.01274

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Higgs width measurement in a nutshell

- Total Higgs width Γ_H is not a fundamental parameter of the theory, but of great phenomenological interest (Higgs mechanism \rightarrow overall coupling strength)
- Direct Higgs width measurement via resonance shape is limited at LHC by experimental mass resolution of $\mathcal{O}(1)$ GeV (CMS: $\Gamma_H < 2.4$ GeV, but note that $\Gamma_{H,SM} \approx 4$ MeV)

• All resonant Higgs cross sections depend on Γ_H , therefore Γ_H and couplings cannot be determined at the LHC (on-peak) without theoretical assumptions M. Duhrssen et al. (2004), LHC Higgs Cross Section WG (2012)

- For broad class of models, assuming upper limit for HWW or HZZ coupling (e.g. SM) \rightarrow upper bound for Γ_H ($\Gamma_H = \mathcal{O}(\Gamma_{H,SM})$) M. Peskin (2012); B. Dobrescu, J. Lykken (2013)
- Assuming no BSM Higgs decays, and Higgs coupling parameterisations, can fit Higgs width to data and agreement with SM Higgs width is found V. Barger, M. Ishida, W. Keung (2012); K. Cheung, J. Lee, P. Tseng (2013); J. Ellis, T. You (2013); A. Djouadi, G. Moreau (2013); P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein (2014)

• $e^+e^- \rightarrow Z(H \rightarrow \text{all})$: construct recoil mass and measure HZZ coupling $\rightarrow \Gamma_H$ can be determined indirectly, ILC: 6%–11% accuracy M. Peskin (2013), T. Han et al. (2013)

- Direct threshold scan at muon collider: Γ_H accuracy 4%–9% T. Han, Z. Liu (2013)
- Higgs width determination could provide first evidence for BSM Higgs interactions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Off-shell Higgs signal and Higgs width determination

indirect Higgs width determination via on- and off-peak Higgs cross section

F. Caola, K. Melnikov (2013) arXiv:1307.4935

$$|\mathcal{M}_{i \to H \to f}|^2 = \frac{|\mathcal{M}_i|^2}{|p_H^2 - M_H^2 + iM_H\Gamma_H|^2}$$

resonance contribution to signal cross section ("on-peak"): $\sigma_{i \to H \to f} \propto \frac{g_i^2 g_f^2}{\Gamma_H}$

NWA scaling degeneracy: σ unchanged if $g_i \rightarrow \xi g_i, \ g_f \rightarrow \xi g_f, \ \Gamma_H \rightarrow \xi^4 \Gamma_H$

cf. L. Dixon, Y. Li arXiv:1305.3854 (see below)

$$\sqrt{p_H^2} - M_H \gg \mathcal{O}(\Gamma_H) \rightarrow p_H^2 - M_H^2 \gg M_H \Gamma_H \rightarrow |\mathcal{M}_{i \to H \to f}|^2 \approx \frac{|\mathcal{M}_i|^2 |\mathcal{M}_f|^2}{|p_H^2 - M_H^2|^2}$$

off-resonance contribution ("off-peak"):
$$\sigma_{i \to H \to f} \left(\sqrt{p_H^2} - M_H \gg \mathcal{O}(\Gamma_H) \right) \propto g_i^2 g_f^2$$

sizeable off-resonance contribution to signal cross section is independent of Higgs width, and therefore "breaks" NWA scaling degeneracy: $\sigma_{\rm off-peak}/\sigma_{\rm on-peak} \propto \Gamma_H$

competitive constraints on Higgs width without assumptions(?) feasible with LHC data

large interference with cont. background (necessary to prevent unitarity violation) weakens bounds

J. Campbell, K. Ellis, C. Williams (2013) (update of Caola-Melnikov analysis)

CMS Higgs selection cuts are applied:

$$\begin{split} p_{T\ell 1} &> 20\,\text{GeV}, \, p_{T\ell 2} > 10\,\text{GeV}, \, p_{Te} > 7\,\text{GeV}, \, p_{T\mu} > 5\,\text{GeV}, \, |\eta_{\mu}| < 2.4, \, |\eta_{e}| < 2.5, \, M_{\ell\bar{\ell}} > 4\,\text{GeV}, \\ M_{4\ell} > 100\,\text{GeV}, \, 40\,\text{GeV} < M_{\ell\bar{\ell},\,\text{closest}} < 120\,\text{GeV}, \, 12\,\text{GeV} < M_{\ell\bar{\ell},\,\text{other}} < 120\,\text{GeV} \, (\text{relative to} \, M_{Z}) \end{split}$$

Best prediction cross sections for $pp \to H \to ZZ \to e^-e^+\mu^-\mu^+$ in fb, obtained using the running scale $m_{4\ell}/2$:

			$m_{4\ell} > 130 \; {\rm GeV}$		$m_{4\ell} > 300 \text{ GeV}$	
Energy	PDF	σ^{H}_{peak}	σ^{H}_{off} σ^{I}_{off}		σ^{H}_{off}	σ^{I}_{off}
7 TeV	MSTW	0.203	0.025	-0.053	0.017	-0.025
	CTEQ	0.192	0.021	-0.047	0.015	-0.021
8 TeV	MSTW	0.255	0.034	-0.073	0.025	-0.036
	CTEQ	0.243	0.031	-0.065	0.022	-0.031
13 TeV	MSTW	0.554	0.108	-0.215	0.085	-0.122
	CTEQ	0.530	0.100	-0.199	0.077	-0.111

orence 22 Apr 2015 18 / 40

For $\sigma_{off} = \sigma_{off}^{H} + \sigma_{off}^{I}$ with $\sqrt{s} = 8$ TeV and MSTW PDF set: $\xi^{4} = \Gamma_{H} / \Gamma_{H}^{SM}$

$$\begin{split} \sigma_{off}(m_{4\ell} > 130 \; \mathrm{GeV}) &= 0.034 \underbrace{\left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right)}_{\text{Higgs signal}} - 0.073 \underbrace{\sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}_{\text{interference}} \\ \sigma_{off}(m_{4\ell} > 300 \; \mathrm{GeV}) &= 0.025 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 0.036 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}} \end{split}$$

Normalising to the number of events observed at the peak one can estimate number of Higgs-related off-peak events (properly combining 7 and 8 TeV data used in CMS $H \rightarrow ZZ \rightarrow 4\ell$ analysis):

$$N_{off}^{4\ell}(m_{4\ell} > 130 \text{ GeV}) = 2.78 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 5.95 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$
$$N_{off}^{4\ell}(m_{4\ell} > 300 \text{ GeV}) = 2.02 \left(\frac{\Gamma_H}{\Gamma_H^{SM}}\right) - 2.91 \sqrt{\frac{\Gamma_H}{\Gamma_H^{SM}}}$$

Second term accounts for interference between $gg \to H \to ZZ \to 4\ell$ (Higgs signal amplitude) and $gg \to ZZ \to 4\ell$ (continuum background amplitude)

イロト イポト イヨト イヨト 二日

Higgs width bounds from cut-based analysis

Using event number observed in off-peak region (451) and number expected from continuum background only (431 ± 31):

Method can be applied to $H \rightarrow WW$ channel (M_T), comparable bounds appear feasible MCFM (2013)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト ・

Higgs width bounds from matrix element method ($H \rightarrow ZZ$) Matrix element method: optimize discrimination using fully differential information

Associate probabilistic weight with each event:

$$\begin{split} P(\phi) &= \frac{1}{\sigma} \sum_{i,j} \int dx_1 dx_2 \, \delta(x_1 x_2 s - Q^2) f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(x_1, x_2, \phi) \\ P_{q\bar{q}} : q\bar{q} \text{ induced continuum background} \\ P_{gg} : gg \text{ induced contributions} \\ \text{(incl. Higgs signal, cont. bkg. \& interf.)} \\ P_H : gg \text{ induced Higgs amplitude squared} \\ \text{Discriminant:} \\ \hline D_S &= \log\left(\frac{P_H}{P_{gg} + P_{q\bar{q}}}\right) \\ \hline \Gamma_H < (15.7^{-2.9}_{+3.9}) \Gamma_H^{SM} \text{ (95% CL)}, \quad (D_S > 1) \end{split}$$

イロト イポト イラト イラト

CMS analysis

arXiv:1405.3455 (May 2014)

improvements:

- include $2\ell 2\nu$ final states
- include VBF channel (contributes $\sim 7\%$ on peak, and $\mathcal{O}(10\%)$ above $2M_Z$)
- include known QCD and EW corrections F. Caola, T. Kasprzik, G. Passarino, M. Zaro et al.
- slightly different kinematic discriminant ($P_H \rightarrow P_{gg}$), backgrounds fully considered

ATLAS analysis

arXiv:1503.01060 (July 2014, March 2015)

improvements:

- · similar to CMS, thorough consideration of systematic uncertainties
- provide results as function of the unknown $gg \to ZZ$ background K-factor, variation: $[0.5, 2] \times$ signal K-factor
- off-shell signal strength 95%-CL upper limit $\left[5.1, 8.6\right]$ ($\left[6.7, 11\right]$ expected)

22 Apr 2015 23 / 40

Higgs (width) constraints from vector boson fusion

J.M. Campbell, R.K. Ellis, arXiv:1502.02990

(see also C. Englert, M. Spannowksy arXiv:1405.0285, C. Englert, M. McCullough, M. Spannowksy arXiv:1504.02458)

22 Apr 2015 24 / 40

BSM searches and model builder's considerations

Constraining higher dimensional operators with the off-shell Higgs (see below) Disentangling New Physics with the off-shell Higgs boson EFT studies including the off-shell Higgs boson Limitations of model independence

EFT analysis of on- and off-shell $H \rightarrow ZZ \rightarrow 4\ell$ data

A. Azatov, C. Grojean, A. Paul, E. Salvioni (2014) (see also G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle, J. Flament (PRL 2014))

 $\sigma \sim |c_t + c_g|^2$: on-shell degeneracy $c_t + c_g = {
m const}$ is broken by far-off-shell data

Constraints in (c_t, c_g) plane (68%, 95% and 99% probability contours): (not MELA improved!)

N. Kauer Off-shell effects and signal-background interference in Higgs physics SM@LHC 2015, Florence 22 Apr 2015 26 / 40

Effective ggH coupling: boosted v. off-shell Higgs sensitivity

left: boosted analysis, right: off-shell analysis (not MELA improved)

M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schoenherr, F. Krauss, T. Plehn (2014) (1410.5806)

3

BSM benchmark scenario studies

N. Kauer Off-shell effects and signal-background interference in Higgs physics SM@LHC 2015, Florence 22 Apr 2015 28 / 40

Loophole: additional light scalar in the s-channel

ヨト イヨトー

SM: *h* cancels growth $\propto E/v$ of $t\bar{t} \rightarrow ZZ$ amplitude.

Modified *h* couplings: cancellation imperfect; growth of amplitude with *E* provides LHC sensitivity at high m_{ZZ} !

Extended Higgs sector: Require $\kappa_t^h \kappa_Z^h + \kappa_t^H \kappa_Z^H = 1$ for unitarity of $t\bar{t} \to ZZ$ (automatic in renormalizable models): $\kappa_t^h \kappa_Z^h = 1 + \Delta > 1$, $\kappa_t^H \kappa_Z^H = -\Delta$ Amplitude relative to SM:

Presence of H at low mass (well below 350 GeV) causes $gg \to ZZ$ cross section to be SM-like at high m_{ZZ} , even if $\kappa_t^h \kappa_Z^h$ is strongly non-SM-like.

Higgs width via interferometry in $gg \rightarrow H \rightarrow \gamma \gamma$

S. Martin arXiv:1208.1533 (LO analysis of Higgs mass peak shift)

Higgs signal continuum background interference induces sizeable peak shift in $gg \to H \to \gamma\gamma$ (but negligible in $gg \to H \to ZZ^*$)

left fig.: interference contribution (real term) before detector resolution effects center fig.: interference contribution (real term) for different mass resolutions (Gaussian, σ_{MR}) right fig.: peak shift of invariant mass distribution ($\sigma_{MR} = 1.7 \text{ GeV}$): $\Delta M_{\gamma\gamma} = -120 \text{ MeV}$ at LO

 $(H \rightarrow \gamma \gamma)$ +jet at LO: negligible mass peak shift (< 20 MeV for $p_{Tj} > 25$ GeV) Daniel de Florian, et al. arXiv:1303.1397; S. Martin arXiv:1303.3342

3 N

Higgs width via interferometry in $gg \rightarrow H \rightarrow \gamma \gamma$

L. Dixon, Y. Li arXiv:1305.3854 (NLO analysis and Higgs width constraint)

SM mass shift: $\Delta M_{\gamma\gamma} = -70$ MeV at NLO

Vary Higgs width and couplings (maintaining on-peak SM signal strenghts):

 $\Gamma_H < 15 \ \Gamma_H^{SM}$ (14 TeV, 3 ab⁻¹, 95% CL)

Higgs width via interferometry in $gg \rightarrow H \rightarrow \gamma\gamma$ with VBF $H \rightarrow \gamma\gamma$ mass peak as reference

 $\begin{array}{l} \mbox{Calculation of } pp \rightarrow H \ (\rightarrow \gamma \gamma) + 2 \ \mbox{jets signal (VBF and GF) and interference with background (LO)} \\ \mbox{F. Coradeschi, D. de Florian, L. Dixon, N. Fidanza, S. Hoeche, H. Ita, Y. Li, J. Mazzitelli arXiv:1504.05215} \end{array}$

Heavy Higgs - light Higgs - continuum VV interference

consider a heavy Higgs h_2 (signal) in addition to a light Higgs h_1 at 125 GeV (background) Two-Higgs model: SM & real EW singlet scalar, as defined in YR3 arXiv:1307.1347, Sec. 13.3

right fig.: G. Passarino (arXiv:1206.3824)

What is the impact of interference with the offshell tail of the 125 GeV Higgs for a heavy Higgs of 300, 600 or 900 GeV?

$$S \sim |\mathcal{M}_{h2}|^2$$

$$I_{h1} \sim 2 \operatorname{Re}(\mathcal{M}_{h2}^* \mathcal{M}_{h1})$$

$$I_{bkg} \sim 2 \operatorname{Re}(\mathcal{M}_{h2}^* \mathcal{M}_{bkg})$$

$$I_{full} \sim 2 \operatorname{Re}(\mathcal{M}_{h2}^* (\mathcal{M}_{h1} + \mathcal{M}_{bkg}))$$

Heavy Higgs - light Higgs - continuum VV interference

1 K

Heavy Higgs interference in VBF

similar study for VBF (SM-like light & heavy Higgs)

figures taken from YR3 arXiv:1307.1347, Sec. 12.4

Michael Rauch, Franziska Schissler (VBFNLO)

left: SM Higgs with M_H including continuum background and interference right: heavy SM Higgs signal only (blue),

blue plus interference with cont. bkg. & light SM Higgs (red)

standard VBF cuts & LHC detector acceptance cuts are applied

Higgs width/coupling constraints including LEP EW PO

C. Englert, M. McCullough, M. Spannowksy arXiv:1504.02458

Higgs contribution to Z boson self-energy is Higgs width independent (at LO), but depends on HZZ coupling

 $\rightarrow\,$ similar characteristics as (tree-level) off-shell Higgs signal

Consider Peskin-Takeuchi parameters S, T, U with rescaled HVV couplings ($g = c_V g_{SM}$):

$$\begin{split} s_{H}(m_{H},c_{V}) &= \frac{c_{V}^{2}}{\pi M_{Z}^{2}} \left(B_{M_{Z},Z}^{OO} - B_{0,Z}^{OO} - M_{Z}^{2} \left(B_{M_{Z},Z}^{O} - B_{0,Z}^{O} \right) \right) \\ t_{H}(m_{H},c_{V}) &= \frac{c_{V}^{2}}{4\pi M_{W}^{2} S_{W}^{2}} \left(B_{0,W}^{OO} - B_{0,Z}^{OO} + M_{Z}^{2} B_{0,Z}^{O} - M_{W}^{2} B_{0,W}^{O} \right) \\ u_{H}(m_{H},c_{V}) &= \frac{c_{V}^{2}}{\pi} \left(\left(B_{M_{Z},Z}^{O} - B_{0,Z}^{O} \right) - \left(B_{M_{W}}^{O} + M_{Z}^{O} - B_{0,W}^{O} \right) - \frac{1}{M_{Z}^{2}} \left(B_{M_{Z},Z}^{OO} - B_{0,Z}^{OO} \right) \\ &+ \frac{1}{M_{W}^{2}} \left(B_{M_{W}}^{OO} - B_{0,W}^{OO} \right) \right) \end{split}$$

Off-shell $H \rightarrow VV$ signal at a linear collider

S. Liebler, G. Moortgat-Pick, G. Weiglein (2014), arXiv:1502.07970

-

Off-shell $H \rightarrow VV$ signal at a linear collider

S. Liebler, G. Moortgat-Pick, G. Weiglein (2014), arXiv:1502.07970

N. Kauer Off-shell effects and signal-background interference in Higgs physics SM@

M@LHC 2015, Florer

22 Apr 2015 38 / 40

Heavy Higgs-light Higgs interference at a linear collider

S. Liebler, G. Moortgat-Pick, G. Weiglein (2014), arXiv:1502.07970

N. Kauer Off-shell effects and signal-background interference in Higgs physics SM@LHC 2015, Florence 22 Apr 2015 39 / 40

Summary

- $H \rightarrow ZZ, WW$ in ggF & VBF @ LHC: $\mathcal{O}(10\%)$ off-shell high-mass Higgs signal contribution with large Higgs(-Higgs)-continuum interference: now taken into account, provides complementary physics information (similar at high-energy linear collider)
- $gg \rightarrow H \rightarrow ZZ, WW \rightarrow 2\ell 2\ell, 4\ell, 2\ell 2\nu$: interference studied in great detail, tools & events available (caveat: LO); NLO calculation: technically hard, impressive progress
- Semileptonic channels $gg \to H \to WW \to \ell \nu qq'$ and $gg \to H \to ZZ \to \ell \bar{\ell} q \bar{q}$ contribute to ongoing (heavy) Higgs analyses; first analysis of interference effects in semileptonic channels, new feature: interfering tree-level background
- First analysis of interference (& Higgs width bounds) for $pp \to H \to ZZ$ + jet
- First analysis of heavy Higgs-light Higgs-bkg. interference effects in $gg \to H \to VV$, complementary studies for VBF and linear collider
- Direct Higgs width measurement at LHC limited by mass resolution: $\Gamma_H < 600 \ \Gamma_H^{SM}$
- high-mass Higgs tail not Higgs width dependent \rightarrow provides complementary constraints on Higgs couplings and Higgs width Γ_H (when combined with on-peak data)
- Assuming no *E*-dependence of relevant Higgs couplings, a bound on Γ_H can be obtained; optimise bound with fully differential discriminant (Matrix Element Method)
- LHC Run 1: CMS: $\Gamma_H < 5.4 \ \Gamma_H^{SM}$, ATLAS: $\Gamma_H < [4.5, 7.5] \ \Gamma_H^{SM}$ (95% CL)
- $H \to \gamma \gamma$: interference-facilitated bound $\Gamma_H < 15 \Gamma_H^{SM}$ (14 TeV, 3 ab⁻¹, 95% CL)
- LHC Run 2: improved bounds (ggF & VBF), high-mass $H \to VV$ EFT and BSM benchmark studies