Heavy flavor jet-tagging and W + b, c-jet measurements

Philip Ilten on behalf of the LHCb Collaboration

Massachusetts Institute of Technology

April 21, 2015

SM@LHC

Overview

- two **new** results (today)
 - LHCb-PAPER-2015-016: b and c-jet identification performance
 - LHCb-PAPER-2015-021: W + udsg, b, c-jet ratios

- two published LHCb analyses using b-jets (not today)
 - Phys. Rev. Lett. 113 (2014) 8, 082003: $b\bar{b}$ asymmetry
 - JHEP **1501** (2015) 064: Z + b-jet production

Jet Reconstruction

• standard particle flow algorithm

- anti- $k_{\rm T}$ with R = 0.5
- flat jet energy resolution (JER) of $\approx 20\%$
 - from Z + 1-jet with $\Delta \phi(Z, \text{jet}) \approx \pi$
- jet reconstruction efficiency of $\approx 95\%$
- jet fiducial definition:
 - $p_{\rm T}({\rm jet}) > 20 {\rm GeV}$
 - $2.2 < \eta(\text{jet}) < 4.2$
 - reduced from full
 - uniform tag and reconstruction

JHEP 1401 (2014) 033

Secondary Vertex Tagger (1)

- build 2-body SVs
- *n*-body SVs from linking 2-body SVs with shared tracks
- require vertex flight direction within jet, $\Delta R(SV, jet) < 0.5$
- two BDTs
 - BDT(*bc*|*udsg*): separates *udsg*-jet from *b*, *c*-jet
 - BDT(b|c): separates b-jet from c-jet

Secondary Vertex Tagger (2)

LHCb-PAPER-2015-016

variable	separation		variable	separation	
M(SV) min(FD _m (SV))	udsgc udsg	b	$M_{\rm cor}({ m SV})$	udsgb udsg	c ch
$\Delta R(SV, jet)$	uasy udsg	<i>cb</i>	N(trk)	uusy $udsgc$	b
$N(\text{trk} \in \text{jet})$ $\log(\chi^2_{\text{FD}}(\text{SV}))$	udsgc all	b	$\frac{ Q(SV) }{\log(\chi^2_{IP}(SV))}$	udsgb all	С

b, c-tagging, W + b, c-jet

b, c-jet Tagging

Jet Flavor Determination (1)

LHCb-PAPER-2015-016

• fit 2-dimensional BDT(bc|udsg) versus BDT(b|c) distributions

- validate with four tag+probe data sub-samples
 - B + jet: b-enhanced
 - D + jet: c and b-enhanced
 - displaced- μ + jet: *c* and *b*-enhanced
 - W + jet: use prompt isolated μ , udsg-enhanced

tag-je

Jet Flavor Determination (2)

LHCb-PAPER-2015-016

fit distribution

Ilii Ilten

b, c-tagging, W + b, c-jet

April 21, 2015 7 / 20

Jet Flavor Determination (3)

LHCb-PAPER-2015-016

b-enhanced (B + jet)

Ilten

b, c-tagging, W + b, c-jet

b, c-jet Tagging

Efficiencies (1)

LHCb-PAPER-2015-016

$$\frac{N_x(\mathrm{SV})}{N_x(\chi_{\mathrm{IP}}^2)}, x \in \textit{udsg}, c, \textit{b}$$

c-enhanced (D + jet) b-enhanced (B + jet)

 $\chi^2_{\rm IP}$ of hardest- $p_{\rm T}$ track (large initial *udsg*-background)

 $\chi^2_{\rm IP}$ of hardest- $p_{\rm T}$ muon (only $\mathcal{O}(10\%)$ of jets)

b, c-tagging, W + b, c-jet

b, c-jet Tagging

Efficiencies (2)

udsq-jet

LHCb-PAPER-2015-016

c-jet and b-jet

source	b -jets	c-jets
BDT templates [*]	$\approx 2\%$	$\approx 2\%$
udsg-jet large IP component [*]	$\approx 5\%$	$\approx 10-30\%$
IP resolution	_	_
hadron-as-muon (hardest- μ only)	5%	20%
out-of-jet (b, c) -hadron decay	_	_
gluon splitting	1%	1%
pile up	-	_
total (combined fit)	$ \approx 10\%$	$\approx 10\%$
*dependent on jet type and $p_{\rm T}$		

W + jet Measurements

- use $W \to \mu \nu$ final state
- measure ratios and asymmetries

•
$$\frac{\sigma(Wc)}{\sigma(Wj)}$$
, $\frac{\sigma(Wb)}{\sigma(Wj)}$, $\frac{\sigma(W^+j)}{\sigma(Zj)}$, $\frac{\sigma(W^-j)}{\sigma(Zj)}$
• $\mathcal{A}(WX) \equiv \frac{\sigma(W^+X) - \sigma(W^-X)}{\sigma(W^+X) + \sigma(W^-X)}$

•
$$\mathcal{A}(Wc), \, \mathcal{A}(Wb)$$

- fiducial definition
 - $p_{\rm T}(\mu) > 20$ GeV, $2.0 < \eta(\mu) < 4.5$
 - $p_{\rm T}(j) > 20$ GeV, $2.2 < \eta(j) < 4.2$
 - $\Delta R(\mu, j) > 0.5$
 - $p_{\rm T}(\mu + j) > 20 \,\,{\rm GeV}$

Signals and Backgrounds

Analysis Strategy

- selection:
 - fiducial requirements except $p_{\rm T}(\mu + j) \rightarrow p_{\rm T}(j_{\mu} + j)$
 - hardest- $p_{\rm T}$ muon candidate, jet containing muon is j_u
 - hardest- $p_{\rm T}$ jet candidate from same primary vertex
- W + jet content from isolation fit
- BDT(bc|udsg) and BDT(b|c) fit
- W + b-jet: top extrapolated from side-band
- W + c-jet: $Z \to \tau \tau$ from $p_{\rm T}({\rm SV})/p_{\rm T}(j)$ fit

W + jet Determination

- isolation defined as $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$
- fit in bins of \sqrt{s} and muon charge
 - di-jet template from $p_{\rm T}$ -balanced events, $p_{\rm T}(j_{\mu} + j) < 10 \text{ GeV}$
 - Z + jet yield and template extrapolated from di-muon Z + jet data
 - W + jet template from di-muon Z + jet data, corrected to W + jet with simulation

Flavor Determination (1)

•

fit BDT(bc|udsg) versus BDT(b|c) distribution in each bin of \sqrt{s} , muon charge, and $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ (bin of 0.9 - 1.0 below)

b, c-tagging, W + b, c-jet

W + b, c-jet Ratios

Flavor Determination (2)

Systematics

$\rm LHCb\text{-}PAPER\text{-}2015\text{-}021$

source	$\left \begin{array}{c} \frac{\sigma(Wb)}{\sigma(Wj)} \end{array} \right $	$rac{\sigma(\mathit{Wc})}{\sigma(\mathit{Wj})}$	$\frac{\sigma(Wj)}{\sigma(Zj)}$	$\mathcal{A}(Wb)$	$\mathcal{A}(\mathit{Wc})$
(b, c)-tag efficiency	10%	10%		_	_
isolation templates	10%	5%	4%	0.08	0.03
top	13%	_	—	0.02	
SV-tag BDT templates	5%	5%		0.02	0.02
$Z \to \tau \tau$	_	3%	—	—	_
jet reconstruction	2%	2%	_	_	_
jet energy	2%	2%	1%	0.02	0.02
trigger and selection	1%	1%	2%	—	_
W(au, u)	_	_	1%	—	_
other electroweak	_	—	—	_	_
total	20%	13%	5%	0.09	0.04

Results

Conclusions

Summary

- robust heavy flavor tagging algorithm implemented
 - cut on BDT(bc|udsg) and BDT(b|c) or fit
- tagging efficiency well modeled by simulation
 - within 10% for heavy flavor and 30% for light
 - fully data driven method using two techniques
- + 25% c-jet and 65% b-jet tagging efficiencies attained with 0.3% udsg-jet rejection

- unique forward measurement of W + udsg, c, b-jet ratios
 - results in agreement with theory predictions
- methods validated for Run II measurements, e.g. top

Detector

JINST 3 (2008) S08005

- fully instrumented between $2 < \eta < 5$
- momentum resolution between 0.4% at 5 GeV to 0.6% at 100 GeV
- impact parameter resolution of $13-20\;\mu\mathrm{m}$ for tracks
- secondary vertex precision of 0.01 0.05(0.1 0.3) mm in xy(z)