

Detecting Photons for Fast Timing

Calorimeter Precision Timing

Workshop on "Timing detectors for PPS" CERN 19.11.2014

Adi Bornheim Caltech

Outline

- Photon detection Photon detectors
- > Precision Timing Applications for HL-LHC.
- Precision Timing with Calorimeters
 - > SEC
 - Scintillator
- Summary

Photo Sensors

Window

PMT : typically ~ns rise time, setups with a few 100 ps possible

Semi-conductor based (SiPM, APD, ..): time resolution ~100 ps

MCP-PMT : few ps resolution for charged particles

> Streak camera : sub ps

Limit for precision timing ?

Single-Photon / Multi-Photon

- To achieve good time resolution need fast rising, large signals, small jitter and low noise.
- Signals consisting of many, synchronous photons improve the precision of the averaged signal.

A. Ronzhin et al. / Nuclear Instruments and Methods in Physics Research A 616 (2010) 38-44

Goals of the HL-LHC

- A fundamental scalar boson has been found
 - The study of the Higgs boson will continue to be a central element
 - Precise measurements of the Higgs couplings, tensor structure, rare decays
 - Role of the Higgs in EWK SB through $W_L W_L$ scattering
- Possibly exploration of new physics found at LHC
 - Or significant extension of exclusion reach for various BSM scenarios

Challenges at HL-LHC

- Large samples needed to fully exploit LHC, goal : collect x10 more
 - <PU> ≈ 140 at HL-LHC → 50nb/sec , collect 3000 fb⁻¹
- Some key signatures at HL-LHC
 - Higgs VBF and $W_L W_L$ scattering with forward jets, vertex identification for H $\rightarrow \gamma \gamma$
 - Searches in final states with MET from LSP
 - Precision studies of new physics which may be discovered at LHC

Precision timing at HL-LHC

- Target resolution of O (20-30 psec)
- − Allows reconstruction of $H \rightarrow \gamma \gamma$ vertex and ~x10 pileup suppression
- Applications of timing information:
- <u>Object level</u> : (e.g. identify forward PU jets for VBF Higgs, WW scattering)
- <u>Hit level</u> : (e.g. timing-based cluster cleaning)
- <u>Event level</u> (hard scatter vertex reconstruction, e.g. for $H \rightarrow \gamma \gamma$)
- <u>Separate</u> spatially overlapping vertices that originate at different times

ಶ(է₁ - է₂) [ns]

10-1

 $\sigma(t_1 - t_2) = \frac{N}{\Lambda - t_2} \oplus \sqrt{2} \overline{C}$

ndf = 173 / 169

N = 35.1± 0.2 ns $\overline{C} = 0.020 \pm 0.004 \text{ ns}$

10

Timing Performance of CMS ECAL

Results from pp collision data at LHC :

- Reconstruct time of two electron showers from $Z \rightarrow ee$ decay.
- \blacktriangleright Δt_{TOF} : ~270 ps, single channel : ~190 ps, without path length correction : ~380 ps
- Constant term of resolution : ~20 ps in test beam, ~70 ps in situ (same clock).
- Studies on jet timing vertex resolution suggest very promising performance.

10 E in EB [GeV]

E in EE [GeV]

CMS 2008

 10^{2}

 $s(t_1-t_2)[ns]$

 10^{-1}

 10^{2}

 10^{3}

 A_{eff} / σ_n

CMS forward calorimeters in HL-LHC

- Extensive studies of radiation damage
 - Both in test exposures and using the ~30fb⁻¹ of CMS data
 - Compared with CMS simulations and radiation model
- Have to replace the CMS endcap $(1.5 < |\eta| < 3.0)$ calorimeters
 - o Barrel ECAL / HCAL and HF (3.0<| η |<5.0) can survive 3000 fb-1
 - Replace ECAL and HCAL endcaps before HL-LHC (i.e. after L=300-500fb⁻¹)

CMS calorimeters in HL-LHC

FLUKA nominal geometry 1.0.0.0

Phase 2 Upgrades Strategy

- Maintain performance at extreme PU
- Sustain rates and radiation doses

Endcap options : Shashlik & HGCal

- > W-absorber, LYSO (CeF₃)scintillator
- Compact (~11cm long), small Moliere radius (13.7mm), high granularity (14mm²) to mitigate pileup
- High light yield for good e/γ energy resolution ~10%/√E
- Readout with capillaries filled with liquid WLS
- Readout options being evaluated now, GaInP or SiPM

E-HG

E-EG

- **ECAL (E-HG):** ~33 cm, 25 X₀, 1λ:
 - 30 layers of Si separated by 0.5/0.8/1.2 X₀ of alternating W, lead/Cu
- HCAL (H-HG): ~60 cm, 3.5λ:
 - 12 planes of Si separated by 40 mm of brass
- Back HCAL (B-HG) as HE re-build 5.5λ
- > ΔΕ/Ε ~ 25%/√Ε;
 - > 3D shower reconstruction
 - Use shower topology to mitigate PU effect

B-HG

Fast timing: secondary emitter

- > Starting point in exploring precision timing in calorimeters
 - Secondary emitter material as active element in a sandwich type calorimeter
 - First proposed: "On possibility to make a new type of calorimeter: radiation resistant and fast", A. I. Ronzhin et. al, preprint IFVE 90-99, 1990.

- Secondary particles from EM shower are detected by MCP
 - > Signal is proportional to the number of secondaries \rightarrow energy of parent
 - > Most of secondary particles are low energy \rightarrow MCP very efficient
 - > MCP are intrinsically very fast \rightarrow calorimeter with very fast timing

Precision Timing with Secondary Emission

- Time resolution with commercial MCP, extrapolated to device with no quartz window : ~40 ps.
- Signal creation in MCP layer, referred to as secondary emission (SEC).
- > Initial tests yield indeed 40 ps in SEC mode.
- \Rightarrow Thin layer detector with sufficient timing resolution for HL-LHC.

A. Ronzhin et. al. NIM A, Vol 749 p 65-73

Secondary Emission Calorimeter

- Tungsten / MCP sampling calorimeter in a vacuum vessel.
- > PSEC4 readout, LAPPD MCP layer.
- First beam test last week with one MCP layer live.
- Option for a shower max timing layer in LHC detectors.

Precision timing with crystals

- > Main ingredients can be factorized
- NIM A 749 (2014) p 65-73 :
 - > In the same paper we studied the effects of t_P and t_D : ~15 ps (MCP-PMT) and 6 ps (DRS4)

Photon Traces in LYSO Crystal

- For high energy showers in high light yield crystals, number of scintillation light yield is very large (>10⁵ / GeV).
- Photon detection at one location in the crystal will be an averaged transit time spectrum

Shower Shape and Size

- Size of the shower given by radiation length X₀. We use 1.7 cm, 10 cm and 20 cm LYSO crystals as well as 1.5 mm thick LYSO plates.
- > In dense scintillators X_0 is of the order 1 cm. LYSO crystals : 1.2 cm.
- From simulation studies : Shower fluctuations in 100 GeV photon showers cause fluctuation of the mean shower time of the order of few 10 ps, dominated by the conversion depth.
- > Mean shower depth varies by several X_0 as a function of energy.
- \Rightarrow Shower propagation takes 100s of ps.

Optical Transit Time Spread

- Effect of the scintillation photon arrival at the photo detector we refer to as Optical Transit Time Spread.
- Experimental program to explore ultimate timing resolution, in particular the impact of the optical transit time spread.

Time evolution of a shower from photon (min bias) in CMS ECAL

Scintillation Light Time Spectrum

- Scintillating crystals get often classified in fast and slow by their light output decay constants. This is often 10s of ns – PWO, LYSO : ~40 ns.
- Timing information is extracted from the leading edge of the signal the rise time of the light output is important.
- > LYSO :
 - > Scintillation light output rise time $t_R = 75$ ps.
 - > 35000 photons/MeV, t_D = 33 ns.
 - See : S Seifert, J H L Steenbergen, H T van Dam and D R Schaart, 2012 JINST 7 P09004. doi:10.1088/1748-0221/7/09/P09004

Photo Detector Timing Performance

- Typical timing performance parameters of photo detectors are the rise time, single photon timing jitter, n-photon timing jitter.
- As we measure signals with many photons there may be additional factors typically not quoted by manufactures – like the 100000-photon timing jitter.
- > Part of our program is to characterize the timing performance of various photo detectors.
- We are considering PMTs, SiPMs, MCPs, HAPDs. Rise times of faster devices may be smaller than transit time spread.

Hamamatsu MCP-PMT

Rise Time [©]	150	—	ps
Fall Time ®	360	-	ps
I.R.F. (FWHM) ①	45 J	_	ps
T.T.S. (FWHM)	_	25 ®	ps

Precision timing with crystals

- > With the secondary emission setup we showed that
 - Timing resolution of the MCP-PMT (t_P) is about 11 ps
 - The electronic time resolution of the (t_D) DAQ system is about 6 ps
 - Time of arrival of the front of an electromagnetic shower can be determined with a precision < 20 ps.
 - we conclude that the associated time scale t_c does not contribute significantly to the time resolution of our experimental setup.
- > To complete the characterization of the TOF resolution
 - Focus on contributions due to fluctuations in the scintillation process (t_s) , and in the optical transit (t_7) to the photodetector.

Experimental setup: Scintillation Time *t*_S

> Study the effect of scintillation (of LYSO) on time resolution

Minimize the effect of optical transit by using a relatively small LYSO crystal (1.7cm x 1.7cm x 1.7cm cube)

TOF Measurements (1.7 cm³ LYSO)

Time resolution : LYSO cube

- Note: Energy contained in the cube is a small fraction of beam energy
- MCP coupled to LYSO cube via ~0.8 cm cookie. Fraction of scintillation light captured is small.
- Subtracting the contributions from DAQ, PMT and trigger size: t_s<20 ps

Experimental setup: Shashlik Timing

Beam

Maximize optical transit time jitter: read Shashlik cell fibers
WLS fiber readout further modulates the pulse: study the effect

Impact of the WLS material

- Compare pulse shapes of different WLS materials : Y11 vs DSB fibers provided by Randy Ruchti
 - Significantly faster rise time with DSB (~2.4 ns) compared to Y11 (~7.1 ns).
- From detailed MC simulation and ray tracing : Pulse shape can be described by WLS time constant and scintillation decay constant.
- Timing resolution expected to scale accordingly.

Time resolution Shashlik

- Observe 1/VE dependence of time resolution
- Performance difference can be attributed to WLS rise time.
- Contributions from reference time measurement etc.:~20 ps
- Few 10 psec resolutions shown to be achievable with Shashlik setup
- Effects of optical transit time jitter sub-dominant at current performance.

Future plans

- > Optimize light output onto photo detector:
 - Shorter WLS fibers, thicker fibers & alternative light extraction
 - Test capillaries with fast WLS as soon as available
- Better time reference:
 - Need order few ps tag on the incoming particle
- Use full matrix to ensure shower containment:
 - Relative time resolution among adjacent channels.
- Optimize pulse reconstruction.
 - Current results use rising edge only: pulse shape fits found to gain 10% to 20% performance.
- SiPM/GaInP photosensors
 - Optimization of the PCB board in collaboration with FNAL experts

Future – In Stock

- Recent test beam at CERN at higher energy and cleaner beam.
- Energy resolution from Shashlik compatible with single cell resolution of a 4x4 prototype.
- Time resolution scaling as expected.

Summary

- Precision Timing can play a significant role in PU mitigation @HL-LHC.
- LYSO based detectors as eg. a LYSO/W Shashlik calorimeter can achieve a time resolution of order 10 ps.
- Strategy : Benefit from large number of photons to improve timing precision.
- New type of calorimeter (SEC) under development at FNAL, in collaboration with UChicago and FNAL