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Outline 

 Photon detection – Photon detectors 
 Precision Timing Applications for HL-LHC. 
 Precision Timing with Calorimeters 

 SEC  
 Scintillator  

 Summary 
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Photo Sensors 
 PMT : typically ~ns rise time, setups with 

a few 100 ps possible  

 

 Semi-conductor based (SiPM, APD, ..) : 
time resolution ~100 ps 

 

 MCP-PMT : few ps resolution for  
charged particles 

 

 Streak camera : sub ps  
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Single-Photon / Multi-Photon 
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 To achieve good time resolution need fast rising, large signals, 
small jitter and low noise. 

 Signals consisting of many, synchronous photons improve the 
precision of the averaged signal. 

1x1 mm SiPM 3x3 mm SiPM 



Goals of the HL-LHC 
 A fundamental scalar boson has been found 

– The study of the Higgs boson will continue to be a central element 
– Precise  measurements of the Higgs couplings, tensor structure, rare 

decays  
– Role of the Higgs in EWK SB through WLWL scattering 

 
 Possibly exploration of new physics found at LHC 

– Or significant extension of exclusion reach for various BSM scenarios 
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MET 

forward jets 
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Challenges at HL-LHC 
 Large samples needed to fully exploit LHC, goal : collect x10 more 

– <PU> ≈ 140 at HL-LHC  50nb/sec , collect 3000 fb-1 

 Some key signatures at HL-LHC 
– Higgs VBF and WLWL scattering with forward jets, vertex identification 

for Hγγ 
– Searches in final states with MET from LSP 
– Precision studies of new physics which may be discovered at LHC  
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VBF Hττ at 0 PU  
VBF Hττ at 140 PU  
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Precision timing at HL-LHC 
 Target resolution of O (20-30 psec) 
– Allows reconstruction of Hγγ vertex and ~x10 

pileup suppression 
 Applications of timing information:  
– Object level : (e.g. identify forward PU jets for VBF 

Higgs, WW scattering) 
– Hit level : (e.g. timing-based cluster cleaning)  
– Event level (hard scatter vertex reconstruction, e.g. 

for Hγγ)  
– Separate spatially overlapping vertices that 

originate at different times 
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Timing Performance of CMS ECAL 

02.06.2014 8 Adi Bornheim, TIPP 2014   

Results from pp collision data at LHC : 
 Reconstruct time of two electron showers 

from Z→ee decay. 
 ∆tTOF : ~270 ps, single channel : ~190 ps, 

without path length correction : ~380 ps  
 Constant term of resolution : ~20 ps in 

test beam, ~70 ps in situ (same clock). 
 Studies on jet timing vertex resolution 

suggest very promising performance. 
 
 



CMS forward calorimeters in HL-LHC 
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• Extensive studies of radiation damage 
o Both in test exposures and using the ~30fb-1 of CMS data 
o Compared with CMS simulations and radiation model 

• Have to replace the CMS endcap (1.5<|η|<3.0) calorimeters 
o Barrel ECAL / HCAL and HF (3.0<|η|<5.0) can survive 3000 fb-1 
o Replace ECAL and HCAL endcaps before HL-LHC (i.e. after L=300-500fb-1) 
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HCAL Endcap 
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Phase 2 Upgrades Strategy 
• Maintain performance at extreme PU 
• Sustain rates and radiation doses 

CMS calorimeters in HL-LHC 
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Endcap options : Shashlik &  HGCal 

 ECAL (E-HG): ~33 cm, 25 X0, 1λ: 
 30 layers of Si separated by 0.5/0.8/1.2 X0 of alternating 

W, lead/Cu 

 HCAL (H-HG): ~60 cm, 3.5λ: 
 12 planes of Si separated by 40 mm of brass 

 Back HCAL (B-HG) as HE re-build 5.5λ  
 ΔE/E ~ 25%/√E;  

 3D shower reconstruction 
 Use shower topology to mitigate PU effect 

 

E-HG 

E-EG 

B -HG 

11 

 W-absorber, LYSO (CeF3)scintillator 
 Compact (~11cm long), small Moliere radius 

(13.7mm), high granularity (14mm2) to 
mitigate pileup 

 High light yield for good e/γ energy 
resolution ~10%/√E 

 Readout with capillaries filled with liquid 
WLS 

 Readout options being evaluated now, 
GaInP or SiPM 
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Fast timing: secondary emitter 

 Starting point in exploring precision timing in calorimeters 
 Secondary emitter material as active element in a sandwich type 

calorimeter 
 First proposed: “On possibility to make a new type of calorimeter: 

radiation resistant and fast”, A. I. Ronzhin et. al, preprint IFVE 90-99, 
1990. 
 

 
 
 
 
 

 Secondary particles from EM shower are detected by MCP 
 Signal is proportional to the number of secondaries  energy of parent 
 Most of secondary particles are low energy  MCP very efficient  
 MCP are intrinsically very fast  calorimeter with very fast timing  
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electron 

MCP 

Lead absorber 

19.11.2014 Adi Bornheim, Precision Timing Calorimeter 



Precision Timing with Secondary Emission 
 Time resolution with commercial MCP, extrapolated to 

device with no quartz window : ~40 ps. 
 Signal creation in MCP layer, referred to as secondary 

emission (SEC). 
 Initial tests yield indeed 40 ps in SEC mode. 
⇒ Thin layer detector with sufficient timing resolution for 

HL-LHC.  
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Photek A an B 

Lead Photonis 

Beam 

A. Ronzhin et. al. NIM A, Vol 749 p 65-73 

DRS4 boards 
5 GSPS, 700 MHz 



Secondary Emission Calorimeter 
 Tungsten / MCP sampling calorimeter in a vacuum vessel. 
 PSEC4 readout, LAPPD MCP layer. 
 First beam test last week with one MCP layer live. 
 Option for a shower max timing layer in LHC detectors.  
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Precision timing with crystals 

 Main ingredients can be factorized 
 NIM A 749 (2014) p 65-73 : 

 In the same paper we studied the effects of tP 
and tD: ~15 ps (MCP-PMT) and 6 ps (DRS4) 

 Studies of tS and tT  
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Photo Detector 

Crystal 

e/γ 

tTOF  1) tC  
Conversion  

Depth 

2) tS:  
Scintillation  

process 

3) tT:  
Transit time 

jitter 

4) tP: ~15 ps 
Photo  

detector  
jitter 

x 

5) tD: ~6 ps 
DAQ 
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Photon Traces in LYSO Crystal 

t0 t1 t2 

t3 t4 t6 

 For high energy showers in high light yield crystals, number of 
scintillation light yield is very large (>105 / GeV).  

 Photon detection at one location in the crystal will be an averaged 
transit time spectrum   
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Shower Shape and Size  
 Size of the shower given by radiation length X0. We use 1.7 cm, 10 cm and 

20 cm LYSO crystals as well as 1.5 mm thick LYSO plates. 
 In dense scintillators X0 is of the order 1 cm. LYSO crystals : 1.2 cm. 
 From simulation studies : Shower fluctuations in 100 GeV photon showers 

cause fluctuation of the mean shower time of the order of few 10 ps, 
dominated by the conversion depth.  

 Mean shower depth varies by several X0 as a function of energy. 
⇒  Shower propagation takes 100s of ps. 
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Optical Transit Time Spread 
 Effect of the scintillation photon arrival at the photo detector we refer to 

as Optical Transit Time Spread. 

 Experimental program to explore ultimate timing resolution, in particular 
the impact of the optical transit time spread. 
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γ x 

γ x 

t1 

t2 

EM shower propagation 
snapshot 

Scintillation light propagation 
cS < c 

100 GeV γ 

23 cm 

Time evolution of a shower from photon (min bias) in CMS ECAL  



Scintillation Light Time Spectrum 
 Scintillating crystals get often classified in fast and slow by their light 

output decay constants. This is often 10s of ns – PWO, LYSO : ~40 ns. 
 Timing information is extracted from the leading edge of the signal – the 

rise time of the light output is important.   
 LYSO :  

 Scintillation light output rise time tR = 75 ps. 
 35000 photons/MeV, tD = 33 ns.  
 See : S Seifert, J H L Steenbergen, H T van Dam and D R Schaart, 2012 

JINST 7 P09004. doi:10.1088/1748-0221/7/09/P09004 
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Photo Detector Timing Performance 
 Typical timing performance parameters of photo detectors are the rise 

time, single photon timing jitter, n-photon timing jitter. 
 As we measure signals with many photons there may be additional 

factors typically not quoted by manufactures – like the 100000-photon 
timing jitter. 

 Part of our program is to characterize the timing performance of 
various photo detectors. 

 We are considering PMTs, SiPMs, MCPs, HAPDs. Rise times of faster 
devices may be smaller than transit time spread.  
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Hamamatsu MCP-PMT 



Precision timing with crystals 

 With the secondary emission setup we showed that 
– Timing resolution of the MCP-PMT (tP) is about 11 ps 
– The electronic time resolution of the (tD) DAQ system is about 6 

ps 
– Time of arrival of the front of an electromagnetic shower can be 

determined with a precision < 20 ps.  
– we conclude that the associated time scale tC does not 

contribute significantly to the time resolution of our 
experimental setup. 
 

 To complete the characterization of the TOF resolution 
– Focus on contributions due to fluctuations in the scintillation 

process (tS), and in the optical transit (tT) to the photodetector. 
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Experimental setup: Scintillation Time tS 

 Study the effect of scintillation (of LYSO) on time resolution 
 Minimize the effect of optical transit by using a relatively small 

LYSO crystal (1.7cm x 1.7cm x 1.7cm cube) 
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TOF Measurements (1.7 cm3 LYSO) 
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measure t1-t0  
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Time resolution : LYSO cube 
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 Note: Energy contained in the 
cube is a small fraction of 
beam energy 

 MCP coupled to LYSO cube via 
~0.8 cm cookie. Fraction of 
scintillation light captured is 
small. 

 
 Subtracting the contributions 

from DAQ, PMT and trigger 
size: tS<20 ps 

19.11.2014 Adi Bornheim, Precision Timing Calorimeter 



Experimental setup: Shashlik Timing 

 Maximize optical transit time jitter: read Shashlik cell fibers 
 WLS fiber readout further modulates the pulse: study the effect   
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Impact of the WLS material 

 Compare pulse shapes of different WLS materials : Y11 vs DSB fibers provided by 
Randy Ruchti 
– Significantly faster rise time with DSB (~2.4 ns) compared to Y11 (~7.1 ns).  

 From detailed MC simulation and ray tracing : Pulse shape can be described by 
WLS time constant and scintillation decay constant. 

 Timing resolution expected to scale accordingly. 
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Y11 

DSB1 
16 GeV electrons 
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Time resolution Shashlik  

 Observe 1/√E dependence of time 
resolution 

 Performance difference can be 
attributed to WLS rise time. 

 Contributions from reference time 
measurement etc.:~20 ps  

 Few 10 psec resolutions shown to 
be achievable with Shashlik setup 

 Effects of optical transit time jitter 
sub-dominant at current 
performance. 
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Future plans 

 Optimize light output onto photo detector:  
– Shorter WLS fibers, thicker fibers & alternative light extraction 
– Test capillaries with fast WLS as soon as available 

 Better time reference:  
– Need order few ps tag on the incoming particle 

 Use full matrix to ensure shower containment: 
– Relative time resolution among adjacent channels.  

 Optimize pulse reconstruction. 
– Current results use rising edge only: pulse shape fits found to  

gain 10% to 20% performance.  
 SiPM/GaInP photosensors 

– Optimization of the PCB board in collaboration with FNAL 
experts 
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Future – In Stock 

 Recent test beam at CERN at higher energy and cleaner beam. 
 Energy resolution from Shashlik compatible with single cell 

resolution of a 4x4 prototype. 
 Time resolution scaling as expected. 
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Summary 

 Precision Timing can play a significant role in PU mitigation 
@HL-LHC. 
 

 LYSO based detectors – as eg. a LYSO/W Shashlik calorimeter - 
can achieve a time resolution of order 10 ps. 

 
 Strategy : Benefit from large number of photons to improve 

timing precision. 
 
 New type of calorimeter (SEC) under development at FNAL, in 

collaboration with UChicago and FNAL 
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