Status of 3D silicon pixel detectors for the ATLAS Forward Physics experiment (AFP)

<u>Emanuele Cavallaro</u>, Sebastian Grinstein, Jörn Lange, Iván López Paz

IFAE Barcelona

10th "Trento" Workshop on Advanced Silicon Radiation Detectors Trento, 18 Feb 2015

AFP Introduction

2 stations on each side of IP

- 206 m: tracking only
- 214 m: tracking+timing

- Dedicated short runs at low lumi in initial phase $(\mu \sim 1)$
- High lumi program (μ~50) under study, revisited later
- Installation in staged approach: first two stations ("0+2")
 - Could aim to install in 2015/16 shutdown!

AFP Detectors

Timing

- Task: Constraint on primary vertex for pile-up background rejection
 - \rightarrow 10 ps resolution for high- μ runs (2 mm PV constraint)
 - \rightarrow 30 ps for initial low- μ runs (not needed for 0+2 option)
- Baseline: QUARTIC (Quartz Cherenkov)
- In R&D phase: Si LGAD or Diamond

Tracking

- Task: Tag p and measure its momentum (together with LHC magnets)
- Requirements
 - Good position resolution: 10 μm (x), 30 μm (y)
 - Slim edge of side facing beam: 100-200 µm
 - Highly non-uniform irradiation (up to 3x10¹⁵ n_{eq}/cm²)

Solution

4 layers of slim-edge 3D FE-I4 pixel detectors (telescope configuration)
 → second use of 3D silicon sensors in HEP experiment!

Sensors and Edge Slimming

FE-I4 3D IBL sensors (CNM and FBK)

(more details in A. Gaudiello's talk at this workshop)

- 336x80 pixels of 50x250 µm²
- p-type bulk, 2 n+ columns per pixel
- Edge termination:
 - CNM: 3D guard ring of n⁺ columns
 + p⁺ ohmic-column fence
 - FBK: p+ ohmic-column fence
 - Left/right edge: already 200 µm slim edge for IBL
 - Bottom (should be slim for AFP):1.5 mm bias tab in IBL production (not needed!)

Sensors and Edge Slimming

FE-I4 3D IBL sensors (CNM and FBK)

(more details in A. Gaudiello's talk at this workshop)

- 336x80 pixels of 50x250 μm²
- p-type bulk, 2 n⁺ columns per pixel
- Edge termination:
 - CNM: 3D guard ring of n⁺ columns + p⁺ ohmic-column fence
 - FBK: p+ ohmic-column fence
 - Left/right edge: already 200 µm slim edge for IBL
 - Bottom (should be slim for AFP): 1.5 mm bias tab in IBL production (not needed!)
- Edge slimming of bottom
 - Cut IBL sensors' inactive bottom edge down to 90-210 μm (FE-I4 chip: 80 μm dead region)
 - Technique here: standard diamond-saw cut

Note: IBL spares used for these studies (not always best quality)

Slim-Edge Efficiency at Bottom

- DESY testbeam (4-5 GeV e⁻) with EUDET-type telescope
- Efficiency stable up to last pixel (smeared by telescope resolution)
- For FBK even ~75 µm beyond:
 Efficient edge due to absence of guard ring
 - \rightarrow <15 µm insensitive edge!
 - → Slimmest edge apart from fully active edge technology
 - But implications on resolution/ alignment if edge pixel is different
- For both CNM and FBK: <150 µm insensitive edge possible
 → AFP slim-edge requirements fulfilled

Sample	FBK-S1-R9	FBK-S2-R10	CNM-S3-R5	CNM-S5-R7
Edge extension after cut	91 μm	$87 \mu \mathrm{m}$	$215 \mu \mathrm{m}$	150 μm
Sensitivity extension beyond last pixel	$77 \mu \mathrm{m}$	$75 \mu \mathrm{m}$	$1\mu\mathrm{m}$	7 μm
Remaining insensitive edge	$14 \mu\mathrm{m}$	$12 \mu \mathrm{m}$	$214 \mu \mathrm{m}$	143 μm

Development of Edge Extension in FBK Sensor with Voltage

- Width of efficient edge increases with voltage (depletion zone increases)
- Saturation between first and second guard line beyond last pixel

Edge Extension - Comparison Top-Bottom

FBK_S1_R9, 20 V

- FBK sensitivity extension at top (107 μm) 30 μm larger than at bottom (77 μm)
 - Although symmetric geometry
 - Top sensitivity extension would surpass cut line (at 90 µm) at bottom!

- $R_{top} > R_{bottom}$ for slim-edge devices (from TB and 90 Sr)
- $R_{top} = R_{bottom}$ for regular-edge devices (from 90 Sr)

90Sr source scan

		вот	ТОМ	ТОР		
Sensor	or Edge <hit mult=""> R</hit>		R	<hit mult=""></hit>	R	
FBK_S1_R9	Slim bottom	2.05	1.64 ± 0.05	2.04	1.92 ± 0.04	
FBK13	Regular	2.45	2.14 ± 0.08	2.42	2.14 ± 0.07	

Non-Uniform Irradiation

- Highly non-uniform fluence from diffractive p
 - Future high-lumi runs: max. 5x10¹⁵ p/cm² (~7 TeV p)
 → focus of studies here
 - Initial low-lumi runs: most of the time retracted to parking position
 → lower and more uniform fluence → less demanding
- 2 irrad. campaigns with different non-uniformity scenarios
 - No 7 TeV irradiation facility available yet
 → Proof-of-principle tests at usual irrad. facilities with lower p energy
 - 1) Focussed 23 GeV p irradiation (CERN-PS)→ fluence spread large, gradual transition

lower p energy
 2) 23 MeV p (KIT) through hole in 5mm Al plate
 → very localised fluence with abrupt transition

~5x10 15 p/cm

of protons per 100 fb⁻¹/ pixel (50µm×250µm)

Beam background not considered!

Sensor area (20 x 20mm)

1.8-3.6 x 10¹⁵ n_{eq}/cm²

Thanks to Felix Bögelspacher (KIT) for irradiation

To check: Can detectors be operated to give high eff. in all regions?
 (Irrad. side → high V_{bias} needed; but unirr. side → low V_{BD})

Efficiency Results

DESY and CERN Testbeams

Non-Uniform Irradiation	Unirr. Reference	PS Focussed	KIT Hole (circ.)	KIT Hole (slit)		lit)
Φ [10 ¹⁵ n _{eq} /cm ²]	Unirr.	4.0 (max)	1.8	3.3		3.6
Sample	CNM 55	CNM 57	FBK 12_02_08	CNM S5-R7		CNM S3-R5
Edge	Regular	Regular	Regular	Slimmed		Slimmed
V _{bias} [V]	30	130	58	90	100	130
Threshold [ke]	3	1.7	2	2	2	3
ToT @ inj.charge [ke]	10@20	10@20	~11@20	6@10	~5@20	~8@20
SingleSmall Hits Reject	No	No	No	No	Yes	Yes
Eff _{max} (unirr) [%]	99	99	98	99	95	94
Eff _{max} (irr,centre) [%]	-	98	97	96	94	93
Eff _{max} (irr,ring) [%]	-	-	70	93	90	58
	Irradiation Φ [10 ¹⁵ n _{eq} /cm ²] Sample Edge V _{bias} [V] Threshold [ke] ToT @ inj.charge [ke] SingleSmall Hits Reject Eff _{max} (unirr) [%] Eff _{max} (irr,centre) [%]	Irradiation Reference Φ [10¹⁵ n _{eq} /cm²] Unirr. Sample CNM 55 Edge Regular V _{bias} [V] 30 Threshold [ke] 3 ToT @ inj.charge [ke] 10@20 SingleSmall Hits Reject No Eff _{max} (unirr) [%] 99 Eff _{max} (irr,centre) [%] -	Irradiation Reference Focussed Φ [10¹⁵ n _{eq} /cm²] Unirr. 4.0 (max) Sample CNM 55 CNM 57 Edge Regular Regular V _{bias} [V] 30 130 Threshold [ke] 3 1.7 ToT @ inj.charge [ke] 10@20 10@20 SingleSmall Hits Reject No No Eff _{max} (unirr) [%] 99 99 Eff _{max} (irr,centre) [%] - 98	Irradiation Reference Focussed Hole (circ.) Φ [10¹⁵ n _{eq} /cm²] Unirr. 4.0 (max) 1.8 Sample CNM 55 CNM 57 FBK 12_02_08 Edge Regular Regular Regular V _{bias} [V] 30 130 58 Threshold [ke] 3 1.7 2 ToT @ inj.charge [ke] 10@20 10@20 ~11@20 SingleSmall Hits Reject No No No Eff _{max} (unirr) [%] 99 99 98 Eff _{max} (irr,centre) [%] - 98 97	Irradiation Reference Focussed Hole (circ.) Φ [10 ¹⁵ n _{eq} /cm²] Unirr. 4.0 (max) 1.8 3.3 Sample CNM 55 57 12_02_08 S5 Edge Regular Regular Regular Regular Slin V _{bias} [V] 30 130 58 90 Threshold [ke] 3 1.7 2 2 ToT @ inj.charge [ke] 10@20 10@20 ~11@20 6@10 SingleSmall Hits Reject No No No No Eff _{max} (unirr) [%] 99 99 98 99 Eff _{max} (irr,centre) [%] - 98 97 96	Irradiation Reference Focussed Hole (circ.) Hole (s Φ [10¹⁵ n _{eq} /cm²] Unirr. 4.0 (max) 1.8 3.3 Sample CNM 55 CNM 57 FBK 12_02_08 CNM S5-R7 Edge Regular Regular Regular Slimmed V _{bias} [V] 30 130 58 90 100 Threshold [ke] 3 1.7 2 2 2 ToT @ inj.charge [ke] 10@20 10@20 ~11@20 6@10 ~5@20 SingleSmall Hits Reject No No No No Yes Eff _{max} (unirr) [%] 99 99 98 99 95 Eff _{max} (irr,centre) [%] - 98 97 96 94

Unirr.

- Irradiated part (centre) within few % as efficient as unirradiated part
- Significantly lower eff. in ring of irr. part at edge of hole (KIT)
 - Seems not to be due to effectively larger fluence (from position-resolved dosimetry)

Dependence on FE-I4 chip parameters

HitDiscCnfg, PrmpVbnLcc

Device + Irrad	Non-Uniform Irradiation	Unirr. Reference	PS Focussed	KIT Hole (circ.)	KIT Hole (slit)		lit)
	Φ [10 ¹⁵ n _{eq} /cm ²]	Unirr.	4.0 (max)	1.8	3.3		3.6
	Sample	CNM 55	CNM 57	FBK 12_02_08	CNM S5-R7		CNM S3-R5
	Edge	Regular	Regular	Regular	Slim	nmed	Slimmed
MeasSettings	V _{bias} [V]	30	130	58	90	100	130
	Threshold [ke]	3	1.7	2	2	2	3
	ToT @ inj.charge [ke]	10@20	10@20	~11@20	6@10	~5@20	~8@20
	SingleSmall Hits Reject	No	No	No	No	Yes	Yes
Results _	Eff _{max} (unirr) [%]	99	99	98	99	95	94
	Eff _{max} (irr,centre) [%]	1	98	97	96	94	93
	Eff _{max} (irr,ring) [%]	-	-	70	93	90	58
					New TB	Prev	Y Vious TB

- 3-4% lower efficiency for last two columns (both unirr. and irr. area) due to FE-14 chip setting in previous testbeam (TB)
 - HitDiscCnfg= $2 \rightarrow$ Single small hits (ToT<3) rejected (to avoid time-walk effects, but usually TB analyses take HitDiscCnfg=0)
- Higher efficiency in new testbeam in October 2014 with HitDiscCnfg=0
- No dependence on leakage-current compensation parameter PrmpVbnLcc (0, 100, 200) found

AFP Integration Testbeam

November 2014

- AFP system-integration test Tracking + Timing (Quartic+HPTDC)
 - Common trigger
 - Common readout (RCE) \rightarrow 1 data format

- Integration successful
 - Good performance of tracking and timing detectors
- Simultaneous test of alternative timing systems (Si LGAD and diamond)

AFP Pixel Module and Station Production

- AFP run 6682 at CNM finished
 - Lost wafers due to machine malfunctions
 - 5 wafers finished (40 sensors) → UBM at IZM
 - ~9 good sensors after slim-edge dicing (estimated from IV on UBM side)
 - → Yield of good sensors ~23%
 - → Hope to have enough good sensors!
 - 8 needed for 0+2 stage in 2015 (need excellent flip-chipping/assembly yield)
- Flip-chipping (bump-bonding) to FE-I4 to be done at IFAE
- AFP flexible circuit being designed
- Module assembly incl. wire-bonding and QA to be done by IFAE
- Simultaneous production of Roman Pots and Stations
- Timing detectors partially produced, but installation no priority for 0+2 (but desirable to gain experience/study backgrounds)
- → Aim to have pixel modules for first two stations (2x4 3D FE-I4) ready by the end of 2015 (tight!)

Conclusions

- Slim-edge and non-uniformly irradiated 3D AFP sensors studied
 - Insensitive pixel-sensor region highly reduced
 - With guard ring (CNM) insensitive edge down to 143 µm
 - Without guard ring (FBK) even efficient beyond last pixel:
 ~15 µm insensitive edge!
 - High efficiency achievable after non-uniform irradiation at high-lumi fluence (100 fb⁻¹)
- → Slim-edge 3D pixel detectors qualified for AFP
- AFP November 2014 integration testbeam successfully finished
- AFP 3D-pixel-module, Roman Pot and station production ongoing
- Aim to have pixel modules for first two stations ready by the end of 2015 (tight!)
- → Second use of 3D silicon sensors in HEP experiment!

BACKUP

Current and Noise

IV of sensors after slimming: normal for sensor-quality class used

Previous study on FBK sensors: IV unaffected up to 100 µm cut line

Noise of CNM device near edge

No anomalous current and noise after edge-slimming to 100-180 µm

Test Beam

- Check performance (hit efficiency) in test beam
 - DESY II 4 or 5 GeV electrons
 - ACONITE telescope (EUDET type)
 - 6 planes of MIMOSA-26:660k Si pixels (18.4 µm pitch)
 - Trigger: 4 scintillators
 - Thanks to AIDA support

Thanks to all test beam participants, esp. I. Rubinskiy (DESY), D. Pohl (Bonn), O. Korchak (Prague), Sh. Hsu (Washington), A. Micelli (IFAE)

DUTs telescope planes

Regular Unslimmed Edge (Top Side)

- Efficiency stable up to last pixel
 - Smearing due to beam telescope resolution
 - For FBK even ~100 µm beyond (active edge due to absence of guard ring); a bit noisy/hot pixels → masked

Slim Edge (Bottom Side) Other devices

Electrical Characteristics

- Not optimal sensors from beginning (IBL spares)
 - Merged/disconnected bump bonds, partly low V_{BD}

FBK_12_02_08

- V_{RD} ~ 40 V before and after irrad.
- Able to bias up to 58 V

CNM_S5_R7

- Soft BD
- Lower I after irr. at high V

CNM_S3_R5

- Shift of V_{BD} to higher V
- Lower I after irr. at high V

Efficiency of Irradiated Devices

Efficiency vs. Threshold

- Improvement of 1% per 1000e reduction of threshold for unirr. and irr. (centre) area
- Even more for higher irradiated ring

Voltage Dependence of Efficiency/Efficiency(unirr.)

- For better comparison of measurements under different conditions:
 Ratio of efficiency/efficiency(unirr)
- BUT: Curve might change for CNM-R5/7 if measured with HitDiscCnfg =0 (effect on lower eff. is larger)
- Irradiated part (centre)
 - For FBK-08 (1.8x10¹⁵ n_{eq}/cm²) plateau reached already below 20V
 - For CNM-R7 (~3.3x10¹⁵ n_{eq}/cm²) plateau reached at about 60 V
- Irradiated part (ring)
 - All behave differently
 - FBK seems to saturate at 50 V at ~70%
 - CNM-R7 saturates at 90-100 V at ~90%
 - CNM-R5 much lower, but still steeply increasing at 130 V (60%)

Dependence on FE-I4 chip parameters

HitDiscCnfg, PrmpVbnLcc

CNM-S5-R7 (non-uniformly irradiated, October 2014 CERN TB

- Efficiency(HDC0) > Efficiency(HDC2)
- For HDC2: Efficiency(ToT tuned) > Efficiency(ToT untuned)

 Efficiencies for different PrmpVbnLcc consistent within uncertainties

Position-Resolved Dosimetry

Thanks to CNM (G.Pellegrini, M.Baselga) for providing diodes, setup and help!

- Multi-device approach (diodes: n-type STFZ, d=300 µm)
- Irradiation under same slit-like Al masks ("left" and "right") as pixel irradiation at KIT
 - Intended: 5-10 x 10^{13} n_{eq} /cm² (FE-I3 only specified up to $<10^{15}$ n_{eq} /cm², reliable plateau for CV/IV)
 - Obtained: 3.4 x 10¹⁵ n_{eq}/cm² (FE-I3 dead in irr. area, no CV/IV plateau in irr. area)

Investigation of Low-Efficiency Ring

5 mm Al shields:

Pixel-Sensor Efficiency Map

- Effect of irradiation method with Al shield (possibly higher effective fluence)?
 - Scattering of p at edge of Al shield → loose energy → much more damaging
- Or real effect of abruptly non-uniformly irradiated devices?
 - Sensor effect?
 - Transition region between highly irradiated Si and unirradiated Si
 → huge gradient of defect density and current → maybe leads to lower el. field?
 - Chip effect?

Position-Resolved Dosimetry from IV

- New irradiation with diode arrays under same slit-like Al masks (left+right) at KIT (3.4 x 10¹⁵ n_{eq}/cm²)
- Dosimetry from IV

$$\Delta I(\Phi_{eq}) = \alpha \Phi_{eq} V$$

- Measured at 20 °C
- No real plateau for irradiated diodes, but kink at 400-600 V
 → in the following I/V@400 V for fluence calculation taken
- No significant difference between centre and edge of irr. region

Thanks to CNM (G. Pellegrini, M. Baselga) for providing diodes, setup and help!

Fluence vs. Position wrt. Edge

- x error bars = extension of diode; upper y error bar to indicate lack of plateau; $\alpha = 4x10^{17}$ A/cm
- No significant difference between centre and edge of irr. region; consistent with received fluence

Fluence vs. Position wrt. Edge

- x error bars = extension of diode; upper y error bar to indicate lack of plateau; $\alpha = 4x10^{17}$ A/cm
- No significant difference between centre and edge of irr. region; consistent with received fluence
- Substantial fluence (~10¹² 10¹³ cm⁻²) also under Al mask; higher the closer to the hole