Studies of non-irradiated and irradiated HV-CMOS detectors

<u>I. Mandić</u>, G. Kramberger, V. Cindro, A. Gorišek, M. Mikuž, M. Zavrtanik et al., Jožef Stefan Institute ,Ljubljana, Slovenia

> work done in the framework of ATLAS CMOS pixels and ATLAS CMOS strips collaborations

Motivation

- HV-CMOS technology is a very interesting option for detectors at upgraded LHC
 - \rightarrow reduced cost
 - \rightarrow improved granularity and spatial resolution
- essential to understand charge collection properties especially after irradiation and at LHC readout speed
 - \rightarrow very thin depleted layers compared to usual detectors
 - \rightarrow low resistivity silicon compared to usual detector material
- Edge-TCT and CCE measurements with ⁹⁰Sr are ideal tools for such studies
- charge collection studies with HV-CMOS sensors (two types of samples CCPDv2, CHESS1) before and after irradiation will be presented here

HV-CMOS detectors

- charge collecting electrode n-well in p-type substrate, resistivity ~ 20 Ω cm
- depletion layer ~14 um thick at 100 V bias
- CMOS circuitry is implemented in the n-well

Samples

1) CHESS1 chip (ATLAS CMOS strips studies):

 $350 \text{ nm AMS}, 20 \Omega \text{cm}, 120 \text{ V max bias}$

Passive pixels: no amplifier in n-well, n-well connected directly to readout (as in standard diode)

E-TCT

- 100 x 45 μ m² pixels
- passive pixel
 - ightarrow induced current directly observed on the scope

CCE measurement with MIPs from Sr⁹⁰ source

(see. Zhijun's talk earlier today)

- 2 x 2 mm² total area
- 880 passive pixels (45 x 200 μm^2) tied together
- →Large structure needed for good collimation and sufficient event rate

Mandić, TREDI2015, Trento, 17th - 19th February 2014

MIP CCE measurement setup

- HV-CMOS: thin \rightarrow small signals, large noise \rightarrow S/N bad
 - ➔ must have clean sample
 - need large detector for reasonable trigger rate and good collimation, small scintillator

Calibration

• Sr⁹⁰ with 300 μ m thick FZ p-type silicon diode, V_{fd} = 70 V

→ calibration at 25 ns shaping time : 230 electrons (mean)/mV

- confirmed with Am241 source, 59.5 keV photon peak in 300 μm thick detector

Mandić, TREDI2015, Trento, 17th - 19th February 2014

CHESS1 large passive HV-CMOS array

Averaged waveform (5000 samples)

Mandić, TREDI2015, Trento, 17th - 19th February 2014

CHESS1 large passive HV-CMOS array

25 ns shaping: Mean charge = 1010 el + 11 el/V

• charge increases with shaping time \rightarrow diffusion

charge ~ 1000 el at 0 V due to diffusion

→if at 100 V depleted layer 14 µm thick: ~ 1400 el expected from depleted layer: measured: 2100 el → ~ 700 el from diffusion (~ consistent)

CHESS1 large passive HV-CMOS array – irradiated with neutrons in reactor in Ljubljana

charge drops after first irradiation step, small influence of shaping time: small diffusion contribution
 charge increases with more irradiation → depleted region increases due to acceptor removal

 \rightarrow see talk by G. Kramberger

• larger charge at 500 ns shaping at 1e15 n/cm² : detrapping? $\rightarrow \tau_{d1} \sim 500$ ns for holes measured (however for 20% of the trapped holes),

see: G. Kramberger et al., 2012 JINST 7 P04006

Edge TCT

Edge-TCT

Photos of the setup (more details: www.particluars.si)

Edge-TCT Chess1

• passive pixel in the corner

• signal to high voltage and readout (via Bias-T)

Detector connection scheme:

Edge-TCT

Chess1, not irradiated, pixel 100 µm x 45 µm

Mandić, TREDI2015, Trento, 17th - 19th February 2014

Edge-TCT Chess1, not irradiated

1) charge: integral of induced current pulse

2) velocity (in E-TCT): induced current immediately after the laser pulse

 $I(x, y, t \sim 0) \approx q E_w(x, y) \left[\overline{v}_e(x, y) + \overline{v}_h(x, y) \right]; \quad \overline{v}_e(x, y) + \overline{v}_h(x, y) \propto E$

- high velocity ~ depleted region ~ 20 μm \rightarrow about 60% charge within this region
- total charge collection region wider (diffusion) ~ consistent with 2400 el measured with Sr-90
 - ➔ take into account laser beam width

Edge-TCT Chess1, irradiated with 2e14 n/cm²

- charge collection region narrower
- field region (velocity) increases → acceptor removal
- no long tails of induced current pulses → less diffusion

Mandić, TREDI2015, Trento, 17th - 19th February 2014

Edge-TCT Chess1, irradiated with 2e14 n/cm²

After irradiation:

Charge collection and velocity profiles across pixel centre

Mandić, TREDI2015, Trento, 17th - 19th February 2014

 \rightarrow smaller difference between charge collection and velocity (depleted) region

 \rightarrow charge within depleted region: before irradiation ~60% after irradiation ~90 %

Samples

2) CCPDv2 chip (ATLAS CMOS pixels studies): 180 nm, AMS, ~20 Ωcm, 60 V max bias, Active pixels: output of the amplifier monitored on the scope

E-TCT on single cell, 125 x 33 μ m² readout after the charge sensitive amplifier (not observing induced current)

Single cell charge sensitive amplifier:

Edge-TCT, HV2FEI4, pixel 125 μm x 33 μm, irradiated with neutrons in Ljubljana

Charge collection region larger at high fluence

Mandić, TREDI2015, Trento, 17th - 19th February 2014

Edge-TCT, HV2FEI4

- tail (diffusion) seen before irradiation, almost disappears at 5e14 cm⁻²
- profile width (FWHM) is a measure of charge collection region (drift + diffusion) \rightarrow the width of the laser beam (~ 8 um FWHM) should be taken into account

100

V_{sub}=-60 V

Edge-TCT, HV2FEI4

Dependence of charge collection region on bias voltage

- at $V_{sub}=0$ V it is assumed that charge is collected by diffusion (note the FWHM of the beam)
- any additional bias increases depletion layer which adds to the diffusion
- effective doping concentration seems to decrease with fluence
 - \rightarrow depletion region wider after irradiation!

Points to effective acceptor removal – see talk by G. Kramberger tomorrow

Conclusions:

CCE with MIPs from Sr-90:

• first measurements with passive HV-CMOS devices on CHESS1 chip:

 \rightarrow before irradiation: **Q** = 1010 el + 11 el/V

- \rightarrow after irradiation with 2e14 and 5e14 n/cm²: **Q = 250 el + 11 el/V**
- → after 1e15 n/cm2 larger charge than before irradiation: ~ 3200 el @ 120 V

E-TCT:

- passive pixel (CHESS1) : directly probe field region, charge collecting region, observe induced current pulses, long tails (diffusion).
 After irradiation: → depleted region increases, no tails of induced pulses
- active pixel (HV2FEI4): map charge collection region, diffusion smaller after irradiation

→ significant widening of charge collecting region after 1e15n/cm2

Effective Acceptor removal!

In HVCMOS detectors charge collection increases with irradiation in certain fluence range -> selection of substrate material important to explore the effect

Edge-TCT Chess1, not irradiated

• longer integration, more charge collected deeper in the pixel (diffusion)

