

Thomas Bergauer (HEPHY Vienna)

Outline

- Motivation
- Overview about the project
- Results from the Electrical Characterization with new results
- Beam Test results
- Outlook
- Summary

Motivation

 Silicon detectors are an impressive success in HEP experiments

NUCLEAR INSTRUMENTS AND METHODS 169 (1980) 499-502,

FABRICATION OF LOW NOISE SILICON RADIATION DETECTORS BY THE PLANAR PROCESS

J KEMMER

Fachbereich Physik der Technischen Universität Munchen, 8046 Garching, Germany

Received 30 July 1979 and in re-

What has changed since the 80ies

- Silicon surface
 - Today: Up to 200 m² (CMS)
 - Similar size for the phase II upgrades of CMS and ATLAS
 - almost 800 m² for CMS high granularity calorimeter
 - CALICE Si-W-Calo: 2000 m²

- Wafer Size
 - NA11 started with 2" and 3"
 - Today 6" (150 mm) is standard
 - → Introduced in the Industry in the 80ies!

Silicon Producers worldwide

- Small Scale Production (few 10-100 wafers per year)
 - Many institutes and companies
 - 6" available at many sites
 - Broad spectra of quality and price
- For large scale production (few 1.000 – 10.000 wafers per year)
 - Currently only one (high quality) producer
 - Dual or multi-source strategy would be preferable
- Possible new producer: Infineon
 - Wafer Output (Villach): 50.000 per week
 - Production up to 12" wafers could be possible

Company profile (Infineon

- Infineon is one of the major players in the semiconductor business
 - 29,000 employees worldwide
- Main target markets
 - Automotive, Power, Chip Card
- Villach (Austria): R&D and "frontend" production
 - 3,300 employees (1200 in R&D)
 - Production in clean room of class 1 with 10,000 m² area

Timeline of the project

- April 2009: delegation from HEPHY visited Infineon Villach and discussed joint development
- October 2011-February 2012: **First batch** production
- October 2012: Beam tests and Irradiation
 - Beam tests at SPS, Gamma Irradiation at SCK-CEN Mol, Belgium
- Nov 2012-Feb 2013: Production of a second batch
 - July 2013: Neutron irrad at ATI Vienna and proton irrad at KIT
- August 2013-January 2014: batch 3
 - Jan 2014: beam test at DESY
- April 2014-Oct. 2014: batch 4
 - Nov 2014: beam test at SPS
- In parallel since 2013: Discussion about 8" Production

Comments on the Collaboration

- Since the beginning of 2010 we held weekly video meetings
- We are discussing all technical details directly with the engineers in an bottom-up approach
- Attribution of resources to the project was (and is still) low, but steadily increasing (at HEPHY and Infineon)
- The design of the masks was entirely made by us
- The production was accompanied by two diploma students
- We received every wafer from the production batch
 → no hidden losses

Baseline for the production up to now

Goal: re-produce the same sensors CMS tracker is using now

Wafer Material

- 6 inch diameter, 300 micron thickness
- Float-zone n-type substrate,
 ~1.2 kOhm cm resistivity

Process Specifications

- AC coupled p-in-n strips
- SiO₂/Si₃N₄ sandwich coupling dielectric
- PolySi resistor biasing

→ 8 photomasks

Wafer Layout

- Large Sensor: STL
- Small Sensor: STS
- Strixel Sensor: SX2
- **Irradiation Sensor:** STI
- CMS halfmoons (Test structures)
- Large number of diodes and MOS
- SIMS fields

Main Device Properties

Sensor STL

- 120 µm pitch
- 20 µm strip implant width
- Size: 64 x 102 mm
- 512 strips (4xAPV)

Sensor STS, SX2 and STI

- 80 µm pitch
- 20 µm strip implant width
- STS and SX2:
 - Size: 23 x 50 mm

SX2: Strixel

RESULTS FROM THE ELECTRICAL CHARACTERIZATION

Global Parameters of first batch

Size: 64 x 102 mm

120 um pitch

CV-Curves

- Uniform for all sensors on all wafers
- Depletion voltage well defined ≈ 240 V
 - Corresponds to 1.2 k Ω cm and matches specs of bulk material

IV-Curves

- Many sensors are stable up to 1000 V
- Some sensors with very low leakage current but early breakdown
 - Different treatment of the backside n+ implant

Size: 23 x 50 mm Active Size 20.6 x 48.3 mm 256 strips (2xAPV)

80 μm pitch 20 μm strip implant

Baby Sensor

"Bad Strip" Area

 Accumulation of anomalous strips around strip no. 222-248

Low R_{int}: "bad strips" are shorts

- Low Inter-strip
 Resistance
 - Measurement shown for narrow sensor with only 64 strips
 - Good outside of "Bad Strip Area" (> 10 GΩ)
 - "Bad Strip Area" from strip
 30 50 shows very low strip
 isolation (< 1MΩ), i.e.
 shorted strips
- Seen on all sensors

Beam test at CERN's SPS

- Two detector modules built with baby sensors
- Two detector modules built with strixel sensors
- Readout chips (APV25) same as in the CMS Tracker
- Readout system is a prototype for the Belle II Experiment
- Detector modules were
 - Tested at CERN
 - Gamma irradiated in Mol, Belgium (because of available irradiation slot)
 - Tested again at CERN

Selected results: Cluster Widths

- "Bad Strip Area"
 does not stand out
 clearly in beam
 profile
 - Area seems to be fully efficient
- But clusters are wider in "bad strip area"
 - Would be expected for bad strip isolation

Selected results: η distribution

- "Bad Strip Area" shows a distorted η distribution
 - Outside bad area it looks fine
- After γ irradiation η distribution looks fine for all strips

Other ways of curing the bad strips

Temperature tests

- Manipulate the area of bad strips in an positive way → heat up sensors
- Therefore the climate chamber at HEPHY was used (max temp. 180 ° C)
- Heating procedure:
 - 100 ° C for 6 h
 - 180 ° C for 17 h
 - 180 ° C for 90 h
- → Strip parameters continuosly getting better

Neutron irradiation

- STI sensors were irradiated to a fluence of about 1E11 n_{eq} cm⁻² using our Triga Mark II nuclear reactor
- Region of bad strips vanished after irradiation

Before bathing 20min bathing

+40 min bathing

Bathing in deionized water

- Sensor STI1 of batch 2 wafer 08 was bathed for different time periods in deionised water
- Parameters continuously restore (same for Istrip, Cac etc.)
- → Bathing restores sensors

IN THE MEANTIME AT INFINEON

Test Setup at Infineon

- Infineon was setting up test equipment to mimic our electrical characterization
- They use standardized
 Automated Test Equipment (ATE)
 - tests undiced wafers only!
- Today, they are able to measure the same per strip parameters as HEPHY (except for inter-strip parameters!)
- Very good agreement of measured parameters (HEPHY also measured the STL sensor on the undiced wafer)
- → No Area of bad strips for undiced wafers!

Dicing tests

- Initially not much thought was put into dicing
 - Seemed trivial to us but nothing is
- Electrostatic charges generated during the dicing process can influence strip isolation
 - → ESD topic well known at Infineon and other vendors
 - → Several ESD protection methods are available
- Possible way to reduce electrostatic charges →
 CO₂-bubbler
 - CO₂ added to the dicing water in order to carbonize it
 - Resistivity of the dicing water:
 17 MOhm cm → 0.5 MOhm cm
- Infineon diced some wafer with and without CO₂-bubbler

Batch 3/4: different passivation layer thicknesses/materials

- One assumption was that the passivation layer is more sensitive to static charges
- Comparison of 4 sensors with the same specifications expect for the passivation layer
- No significant changes among the different sensors can be observed
- Defective area for sensor 11 is untypical (no low R_{int} observed)

- Passivation 1
- Passivation 2
- Passivation 3
- Passivation 4

Beam Test at SPS in Nov 2014

- After electrical measurements, STS sensors of wafers 5, 6, 7 and 11 were assembled in modules for beam tests at the SPS (North Area H6B)
- Sensors were read out with APV25 Chips
- Only the STS sensor of wafer 11 shows a narrow defective area on the far left (reminder)
- DUT's were placed into the EUDET Telescope Setup:
 - Primary use: Trigger information
 - Secondary use: Tracking (to be prepared)

$$SNR_n = \frac{S_{\text{cluster}}}{N_{\text{cluster}}} = \frac{\sum_{i=1}^n S_i}{\sqrt{\sum_{i=1}^n N_i^2}}$$

Infineon DUT's – 4 modules parallel to telescope planes

CW 1

Beam Test at SPS in Nov 2014 (cntd.)

- Beam spot is fairly small due to small overlap of trigger PM's
- Beam profiles look reasonable
- Sensor 11 shows small irregularities for strip numbers 0-10 (more events with CW2 and less for CW1) → correlated to electrical characterization
- Detailed look to eta distribution does not show charge-up
- Not even in small region of strip 1-10

OUTLOOK

CMS Plan for Phase II upgrade

- During LHC long shutdown 3 (2022-2024): CMS will install a completely new silicon tracker
- The current layout is based on 6" sensors only comprising of two module types:

Wafer layout when CMS is going to 8"

PS Module:

- Module size stays the same
- three sensors instead of two on one wafer
- 2S Module:
 - Fork single 2S
 concept into two:
 2S_{long} and 2S_{short}
- Could be a significant cost saving

Outlook for 2015

- Infineon developed a process for thin (200-300µm) 6" and 8" wafers in 2014 after we started already some discussions in 2013
- Both ATLAS and CMS will go for p-type substrate because of radiation hardness reasons
- CMS will have a test production on both wafer diameters in 2015
 - We are currently finishing the layout, tape-out in two weeks from now
 - Wafer to be ready in summer 2015

CMS High Granularity Calorimeter

- Both the endcap crystal calorimeter and the plastic scintillator calorimeters will need to be replace after LHC operations due to radiation damage.
- CMS is investigating in detail the possibility of using a high granularity calorimeter with ~2.5M channels of silicon pads.
- Total silicon area: 780 m²

Square Hexagonal ~ 100 ~ 130

8" wafers ~ 180 ~ 230

6" wafers

Summary

- Collaboration with Infineon started already five years ago with bottom-up approach
- Several batches in p-on-n technology produced
 - Baby sensors used by CMS for lab and beam tests with new CBC readout chip
 - "bad strip" area identified as charge-up problem and solved
 - Open question: Are Infineon sensors more sensitive to chargeup (to be investigated) and how to mitigate this behavior
- Process flow for n-on-p technology with 200/300 µm thickness developed
 - Will be used for both 8" and 6" test submission by CMS in 2015

THE END

Beam Tests and Irradiations with Infineon Sensors

- Performance has been tested in several beam tests at CERN and DESY
 - Confirms region of bad strip isolation previously seen in electrical characterization
- Several irradiations, e.g. with Neutrons at Atominstitut of TU Vienna
 - Test radiation hardness
 - Qualify reactor as irradiation center (determine neutron spectrum)

Triga Mark II Reactor ATI

Batch overview

Batch	Date	masks	dicing	split groups	features
1	2012	original		Strip dielectric, backside implant	photoresist left
2	Q1 2013			R_poly variation, backside implant	
3	Q4 2013	original	partly CO2	backside implant, passivation	
3.5	Q1 2014	original	CO2	passivation	
4	Q3 2014	3 new layers	partly CO2	passivation	