Measurements with strips and diodes LGAD p-type detectors fabricated at CNM

Marta Baselga¹, Richard Bates², Vitaliy Fadeyev³, Pablo Fernandez¹, Zachary Galloway³, Virginia Greco¹, Salvador Hidalgo¹, Dzmitry Maneuski², Giulio Pellegrini¹, Hartmut Sadrozinski³

> Centre Nacional de Microelectronica CNM - CSIC¹ University of Glasgow² Santa Cruz Institute of Particle Physics SCIPP -UCSC³

10th Trento Workshop - 17th February 2015

RD50 project. Institutes collaborating:

1 Introduction

- 2 Diode Measurements
- 3 Diamond light source

4 IBIC

1. Thin p-type epitaxial wafers

Detector proposed by Hartmut Sadrozinski and Abe Seiden (UCSC), Ultra Fast Silicon Detectors (UFSD).¹

- Provide in the same detector and readout chain:
 - Ultra fast timing resolution [10's of ps]
 - Precision location information [10's of μm]
- Proposed to achieve high electric field using thin p-type epitaxial substrates grown on thick support wafers, p+ type doped, that acts as the backside ohmic contact.

Different thicknesses are used: 10, 50, 75 μm .

¹H. Sadrozinski, "Exploring charge multiplication for fast timing with silicon sensors"

2. Low gain avalanche detectors (LGAD)

Creating an n + +/p + /p - junction along the center of the electrodes. Under reverse bias conditions, a high electric field region is created at this localized region, which can lead to a multiplication mechanism².

²P. Fernandez et al, "Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes", Nuclear Instruments and Methods in Physics Research A658 (2011) 98 102.

Mask layout

Strip detectors

Pitch $p = 80 \mu m$

	Strip	Metal	P-implant	w/p	P-implant /
	$[\mu m]$	[µm]	$[\mu m]$		pitch
AC1	24	20	6	0.3	7.5%
AC2	24	24	6	0.3	7.5%
AC3	24	28	6	0.3	7.5%
AC4	48	44	30	0.6	37.5%
AC5	48	48	30	0.6	37.5%
AC6	48	52	30	0.6	37.5%
AC7	62	58	44	0.775	55%
AC8	62	62	44	0.775	55%
AC9	62	66	44	0.775	55%
AC10 and AC11	32	40	14	0.4	17.5%
and DC					

Strips cross section

Three different metal width:

- Field plate
- No field plate (metal as width as the strip)
- Metal smaller than the strip width

Wafers

Thickness	Resistivity	Resistivity	Substrate	Nominal full
[<i>µm</i>]	$[\Omega cm]$	substrate $[\Omega cm]$	thickness $[\mu m]$	depletion
9.8	110.5	0.006	525	9.3V
50.4	96.7	0.006	525	267V
75.2	104.6	0.006	525	550V
285 (FZ)	12000 ± 7000			70V

Diffusion times of the dopant

- Shallow
- Standard
- Deep

Strip cross section

Big diodes from W14 FZ DEEP with and without gain measured at CNM Barcelona

Charge measurement for big diodes

R6827 W14 FZ Deep big diode with Trialpha source

Measured with a PCB connected to an MCA CNM Barcelona

TCT from R6827W8 big diode EPI 50 Deep

Gain for W8 big diodes epi50µm deep

Measurements taken at UCSC

Diamond Light Source

- R6827W4AC9 Epi10 Standard Gain (High current)
- R6894W4AC9 Epi10 Standard NO Gain
- R6827W13DC2 FZ Standard Gain (Up to 300V)
- R6827W14AC11 FZ Deep Gain (Up to 900V)
- R6894W14AC11 FZ Deep NO Gain (Up to 500V)

Measurements with X-Rays:

- Photons with energy 15keV
- Microfocused beam
- Data taken with Alibava

Analysis: data taken with Alibava systems

Beam analysis

Histogram of the amplitude

Channel: strip hit

CUU 🖉

Measures detectors NO GAIN at Diamond

R6894W14AC11 FZ Deep no gain

Data from $10^5 \ {\rm events}$

Measures at 80V Epitaxial $10 \mu m$ NO GAIN

Diamond Light Source FZ

R6827W13DC1 FZ Standard gain

 ${\rm Data\ from\ }10^5\ {\rm events}$

IBIC Sevilla³: Ion Beam Induced Charge (IBIC) microscopy

Setup from CNA Sevilla

We measured 2 sensors with the Ion Beam Induced Charge microscopy Technique at CNA in Sevilla.

- Protons at 2MeV
- \blacktriangleright Beam spot around $4 imes 4 \mu m^2$
- Two sensors measured:

Epi 50 deep

FZ deep

³With help from Dr. Javier Garcia from CNA

IBIC Sevilla: R6827W8AC4 EPI50 Deep protons 2MeV 100V

17th February 2015 - M. Baselga

CNM-IMB CSIC

IBIC Sevilla: R6827W14AC4 FZ Deep protons 2MeV 150V

17th February 2015 - M. Baselga

CNM-IMB CSIC

IBIC Sevilla: R6827W14AC4 FZ Deep protons 2MeV 400V

CNM-IMB CSIC

CNM-IMB CSIC

Strip simulation with Sentaurus TCAD FZ standard

Simulation of CV curves Gain simulation for 3 strips Simulation FZ Simulation AC3 and AC6-> Gain/No GAIN [uni/4] X) 120 10 - AC3 + AC6 AC3 gain 60 AC6 gain AC3 no gain 40 AC6 no gain 180 200 Bias Voltage IVI Voltage IVI AC3 24um AC6 48µm 1.05+00 1.05+00 1.05+00 1.05+00 1.05+00 1.05+00 AC9 62µm Alpha particl

17th February 2015 - M. Baselga

Simulation p-on-p LGAD FZ $300 \mu m$

Simulation for three strips

- p on p p strips with union at the backside
 - High electric field in the backside - all charge is multiplied
 - Not radiation hard detector applications such linear collider

Gain simulation for 3 strips

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Holes density

Conclusions

Conclusions

- Some diodes measured at UCSC presented gain of 2 (epitaxial $50\mu m$ deep wafer).
- Strips measured at Diamond with X-Rays did not present any gain.
- The study of the measurements taken at Sevilla with the IBIC technique are currently underway.
- Simulations for strips with different widths show that the gain increases with the width.
- Simulation for p-on-p strips with multiplication in the back plane are presented.

Thanks for your attention

CV curves strip detectors for FZ wafer

Electron density

Electron density

Electron density

Electron density

Electron density

Electron density

