Last fabrication run of LGAD detectors at CNM-CSIC.

<u>G. Pellegrini</u>, M.Baselga, P. Fernández-Martínez, D. Flores, V. Greco, S. Hidalgo, A. Merlos, D. Quirion

Centro Nacional de Microelectrónica (IMB-CNM-CSIC) Barcelona, Spain

Work supported by RD50 - Radiation hard semiconductor devices for very high luminosity colliders.

RD50 participating Institutes in this project:

- 1. CNM-Barcelona, G. Pellegrini, Giulio.Pellegrini@cnm-imb.csic.es
- 2. Liverpool University, Gianluigi Casse, gcasse@hep.ph.liv.ac.uk
- 3. UC Santa Cruz, Hartmut Sadrozinki, hartmut@ucsc.edu
- 4. IFCA Santander, Ivan Vila, ivan.vila@csic.es
- 5. University of Glasgow, Richard Bates, richard.bates@glasgow.ac.uk
- 6. INFN Florence, Mara Bruzzi, mara.bruzzi@unifi.it
- 7. CERN, M. Moll, Michael.Moll@cern.ch
- 8. Jozef Stefan Institute , G. Kramberger, Gregor.Kramberger@ijs.si
- 9. IFAE Barcelona, S. Grinstein, sgrinstein@ifae.es
- 10. INFN Torino, N. Cartiglia < cartiglia@to.infn.it>

http://rd50.web.cern.ch/

New Fabrication Run

Top Distribution

Back Metallization

Trento, 17-19 February 2015

New Fabrication Run

Top Distribution

Back Metallization

New Fabrication Run

- 9 LGAD Pad Detectors
 - 3 (8 x 8 mm multiplication area)
 - 6 (3 x 3 mm multiplication area)
- o 9 PiN Detectors
 - 3 (8 x 8 mm active area)
 - 6 (3 x 3 mm active area)
- 4 LGAD pStrips Detectors
 - 32-160-50-06-24
 - **32-160-62-06-12**
 - 64-80-10-06-24
 - ✓ 64-80-22-06-12
- 2 PiN pStrips Detectors
 - 32-160-50-06-24
 - 64-80-10-06-24
- 1 FEI4 compatible pStrip Detector

IJS Ljubljana

- 1 Pixelated LGAD Detector (6 x 6 pixels)
- 1 Pixelated PiN Detector (6 x 6 pixels)

INFN Torino

- **3** LGAD for Timing Applications
 - 200 um to chip edge
 - 250 um to chip edge
 - ✓ 800 um to chip edge

LAL Orsay

• **1** Specific Test Structure (SPR,SIMS,XPS)

113 Structures

- ▶ 47 (10 x 10 mm, total area)
- ▶ 66 (5 x 5 mm, total area)

New Fabrication Run: LGAD & PiN pad Detectors

- Multiplication Area
 - 8 x 8 mm (Type 1, 2, 3) **
 - * 3 x 3 mm
 - \geq Termination:

- * P-Stop + N-Guard Ring (Type 3, 6, 9)
 - * P-Stop + N-Guard Ring with JTE (Type 2, 5, 8)
 - * JTE + P-Stop + N-Guard Ring with JTE (Type 1, 4, 7)
 - * Field Plate 10 μm, 0 μm (Type 7, 8, 9)

New Fabrication Run: LGAD & PiN strip Detectors

LGAD and PiN Pixelated Detectors

IJS Ljubljana

- **1** Pixelated LGAD Detector (6 x 6 pixels) Ο
- **1** Pixelated PiN Detector (6 x 6 pixels) Ο

LGAD for Timing Applications

INFN Torino

- **3** LGAD for Timing Applications Ο
 - 200 um to chip edge
 - 250 um to chip edge \checkmark
 - 800 um to chip edge \checkmark

Specific Test Structure. SRP, SIMS, XPS

Wafer mapping

Wafer 2- low p-doping

Electrical characterization

- Good isolation, ring current small.
- Uniform IV curves within the wafer.

Alpha measurements

13

New Developments

Avoid possible no-uniform charge collected in segmented detectors.

Move segmentation to the ohmic contact.

Useful for large area detectors but not radiation hard.

P on P MicroStrips with Low Gain

N on P vs P on P LGAD microStrips Comparison Ο

P on P MicroStrips with Low Gain

Pad Diodes LGAD with P microStrips at Back Plane Ο

Pad Diodes with Low Gain

Red Laser TCT Characterization. Bottom Injection

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

P on P MicroStrips with Low Gain

Three microStrips Simulation. Electric Field 2D Distribution. Maxim @ Junctions Ο

19	G. Pellegrini	TREDI 2015	Trento, 17-19 February 2015
P on P MicroStrips with Low Gain			
 Three microStrips Simulation. I(V) 			
			300um thick

Simulations IV

P on P MicroStrips with Low Gain

MIP through the middle of the sensors (the central strip) @ 500 V Ο

300um thick

MicroStrips Simulation. Electrostatic Potential 2D Distribution @ V_{BR}

TicroStrips Simulation. Electric Field 2D Distribution @ V_{BR}

MicroStrips Simulation. I(V)

MIP through the middle of the sensors (the central strip) @ 100 V

Simulation MIP particle 100V

- 200um thick wafers (SOI).
- n-on-p technology.
- Atlas and CMS pixels included.
- Velopix (55x55um²).
- Pin diodes.
- UBM will be done at CNM. Under test for 6".

Conclusions

- Optimization of the LGAD peripheral region is crucial for the detector performance
 - Edge termination techniques confine the high electric field into the multiplication area and give voltage capability to the detector
 - Structures within the peripheral region avoid high leakage currents and degradation
- **Deep N-diffusion** termination technique has proved good performance
- Improved yield compared to previous fabrication.
- Good repeatability, stable technology.
- **New production run at the IMB-CNM**
 - LGAD with Gallium (p+ implant), run finished, measurements will start next week.
 - LGAD run in thin substrates, 200um thick, due in March.
 - □ LGAD 6" wafers run, Mask designed. Run will start in March.

Instituto de Microelectrónica de Barcelona **CSIC** Centro Nacional de Microelectrónica

PhysDetLc Project. P on P MicroStrips with Low Gain

N on P microStrips. **PiN** vs **LGAD** Ο

Critical aspects of the LGAD design

Three microStrips Simulation. **Doping Concentration** 2D Distribution Ο

