

<u>João Veloso,</u>

universidade de aveiro

Physics Department – University of Aveiro

Joaquim dos Santos Physics Department – University of Coimbra

Amos Breskin and Rachel Chechik Weizmann Institute of Science, Rehovot

MicroHole & Strip Plate (MHSP)

• Operation Principle

JFCA Veloso et al., RSI 71(2000)2371

MicroHole & Strip Plate (MHSP)

- Present Performance:
 - High gains ~ 10⁴-10⁵
 - Fast charge collection 10 ns
 - Excellent energy resolution 13.5% @ 5.9keV x-rays Xe
 - High rate capability > 0.5 MHz/mm²
 - High pressure operation capability
 - High ion blocking capability
 - 2-D intrinsic capability $-\sigma \sim 125 \mu m$ (with resistive line)

Energy Resolution

@ G > 10⁴ noise < 50 eV

H. Natal da Luz et al., NIM A552 (2005)259

universidade de aveiro

Count rate capability

less than 5% variation @ $G = 10^4$ No visible variation@ G = 3000

JFCA Veloso et al., NIM A580 (2007)362-365

Operation in pure noble gases

Good performance at high pressure:

Operation in pure CF₄: from 1-2.65 bar

PACEM concept

Operation principle

JFCA Veloso et al., JINST (2006) 1 P08003

uses scintillation gases (noble, CF₄, ...)

•2 orders of magnitude higher than for GEM

PACEM with THGEM is also under study

see talk: J. dos Santos

Paris, 13 – 15 of October 2008

universidade de aveiro

First demonstration of a GPM operation in visible range

A. Lyashenko et al., NIMA (2008), http://arxiv.org/abs/0808.1556v2

COBRA – a new hole-type structure for ion blocking

•IBF 1000 x lower than with GEMs

•At the expense of e⁻ collection efficiency (20%)

Optimization is under investigation

A. Lyashenko et al., NIMA (2008), http://xxx.lanl.gov/abs/0804.4396

universidade de aveiro

2D-Imaging – using resistive lines

Paris, 13 – 15 of October 2008

2D-Imaging – examples (active area = $25 \times 25 \text{ mm}^2$)

common quail (coturnix) wing

Stainless steel clip from UA

2D-Rp < **125 μm (σ)** – full area

Paris, 13 – 15 of October 2008

Misalignments difficult large area production

Top side

bottom side

universidade de aveiro

New productions indicates - larger MHSPs are possible

Bottom side

Larger areas - same production method

Paris, 13 – 15 of October 2008

W RD51

universidade de aveiro

Conclusions & future work

- High quality structures have allowed performance improvement in:
 - High pressure operation
 - Energy resolution (13.5% @ 5.9 keV-Xe)
 - Position resolution (σ =125µm, resistive line)
 - Efficient ion blocking
 - Reliability
- Future improvements and work
 - MHSP areas of 5x5cm² and 10x10 cm² are under development.
 - Large area single photon counting visible sensitive GPM.
 - Study and optimization of the COBRA structure.
 - Production of more robust resistive lines for 2D

Thanks for your attention

