THGEM: Introduction to discussion on UV-detector parameters for RICH

Amos Breskin Weizmann

Discussion topics: THGEM: hole-layout geometry? THGEM : rim or no rim? THGEM gain: single or double? Gas? Fields? Readout? Stability of gain? Rates? → Csl aging? RTHGEM?

RD51 meeting, Paris, October 2008

Double-THGEM photon-imaging detector

TO RIM OR NOT TO RIM...?

Higher gain but:

- Higher charge-up
- Studied extensively

Lower gain but:

- Low charge-up
- Higher effective CsI surface
- Need further studies
 (e.g. e-collection into holes)

geometrical parameters of THGEMs studied at Weizmann

THGEM #	Thicknes s t [mm]	Drilled hole diameter d [mm]	Etched Cu diameter [mm]	Pitch a [mm]	<i>Ref</i> PC area [%]	Low (L) or Atm (A) pressure	
1	1.6	1	1 (no etching)	7	98	L*	
2	1.6	1	1 (no etching)	4	94	L*	
3	1.6	1	1.2	4	92	L*	
4, 6	1.6	1	1.2	1.5	42	L*+A	
5	3.2	1	1.2	1.5	42	L*	
7	0.4	0.5	0.7	1	56	А	
8	0.8	0.5	0.7	1	56	А	
9	0.4	0.3	0.5	0.7	54	1 atm	83%
10	0.4	0.3	0.5	1.0	77	1 atm	92%
11	2.2	1	1.2	1.5	42	L*	
Standard GEM	0.05	0.055	.07	.14	77		

UV: Gain did not vary much with geometry

Active CsI area → larger with no rim

THGEM - Gain vs rim size: Ar/5%CH₄

GAIN vs RIM size: TRIESTE results: Ar/30%CO2

VERY NEW! GAIN vs RIM-size in pure Ne

pitch = 1 mm
diameter = 0.5 mm
thickness = 0.4 mm
rim=40-120 microns

SIMILAR GAIN LIMIT WITH X-RAYS for RIM: 40-120 microns: Single-THGEM: gain ~ 5,000 Double-THGEM: gain ~20,000

GAIN single- & double-THGEM: UV (recall)

2-THGEM: 100 higher gain & lower HV. Etrans→ affects total gain

SINGLE-THGEM: EFFECT OF HOLE-PITCH: UV

Single-THGEM: Varying the hole pitch from 0.7 to 1 mm: minor effect on gain

e- collection efficiency into holes (recall)

DEPENDS ON DIFFUSION -> GAS & FIELDS

Large hole \rightarrow smaller diffusion effects \rightarrow full collection at very low gains compared to standard GEM.

e- collection efficiency vs hole-pitch (recall)

e- extraction efficiency from holes vs E _{trans} (recall)

t=0.4, d=0.3, etched d=0.5, **a=0.7**, area 54%

VARIES WITH GAS & THGEM PARAMETERS

GAIN vs HOLE DIAMETER/THICKNESS

MAX GAIN → hole diameter ~ thickness

Reversed Drift-field

Focusing is done by hole dipole field.
Maximum efficiency at E_{drift} =0 (like in GEM).
Slightly reversed E_{drift} (50-100V/cm) good photoelectron collection & low sensitivity to MIPS (~5-10%) !

Attention: gas and field dependent!

Photoelectron extraction: effective QE

FIELD AT THE THGEM CsI SURFACE

High field on the PC surface (high effective QE) Also at low THGEM voltages (e.g. in Ne mixtures!)

Attention: varies with hole-pitch & hole-voltage

C. Shalem et al. NIM A558 (2006) 468

BACKSCATTERING ON GAS: EFFECTIVE QE

No data for Ar/CO₂ & Ne/CH₄

Repeated: extraction from CsI pc: Ar+5%CH4

This work

Repeated: extraction from CsI pc: Ne

Extraction from the CsI pc in: Ne+CH4

This work

This work

Ne/5%CH₄: ~53% @ 400V/cm Ne/23%CH₄: ~69% @ 550V/cm NO SCINTILLATION!

Similar to Ar/5%CH₄

Gain stability

- Discussed yesterday
- Depend on gas, THGEM-parameters, gain, rate. To determine in "real conditions" with CsI/UV.
- Seems better with no rim (TRIESTE) @ 6x10⁴
- To check with Ne-mixtures and high-rate UV

Gain comparison for UV:

- WIS: Ar/5%CH₄ & Ar/30%CO₂, with <u>0.1mm rim</u>: 1-THGEM 10⁵ & 2-THGEMs 10⁷
 Ne, Ne/CH₄ 1-THGEM 10⁵ -10⁶
- TRIESTE: Ar/30%CO₂, with <u>0 rim:</u>
 2-THGEMs 6x10⁴

Summary - considerations for a RICH w Csl

1. Gain → Single- vs double-THGEMs

Lower voltage per THGEM

- Larger dynamic range less sensitive to heavily ionizing BGND
- **Optimize transfer field! (gas-dependent)**

2. Gas

Diffusion: affects e- collection eff. into the holes

V_{hole}: affects effective-QE (photoelectron extraction from CsI)

3. Photon detection efficiency → Effective-QE + e-collection + gain

Effective-QE→ Hole layout & field at CsI surface

Extraction fields should be calculated vs hole-layout & rim-size & gas

- e- collection efficiency should be measured in pulse-counting mode
- with no-rim THGEMs in the selected gas (not simple but method known)
- 4. Gain-stability → rim vs no-rim
- 5. Induction field → defined by readout type
- 6. Drift field above CsI→ slightly reversed to reduce MIPs sensitivity
- 7. RTHGEM? If in Ne: low HV, stable operation...
- 8. Max gain in LARGE AREA THGEM (defects limit)
- 9. RICH tests: how? Who? When?

Ne or Ne/CH₄

- Attractive low voltages
- Similar e-extraction efficiency to Ar/CH4
- High gain for x rays & UV -> dynamic range

But still to verify:

• <u>Calculate fields</u> on PC surface to estimate e- extraction eff. in real conditions

- large diffusion \rightarrow e- collection efficiency into holes <u>should be measured</u>.
 - → optimize transfer field
 - → Maybe need to increase hole size (loss eff. surface)
 - → Max gain in rimless THGEM
- Raether limit ->

verify if lower sensitivity to heavily ionizing BGND