Report from WG2: Common Characterisation and Physics Issues

Harry van der Graaf 2nd RD-51 Workshop, Paris, Oct 15, 2008

Discharge protection for MPGDs

Martin Fransen, Nikhef

Gridpix detectors

• Grid made by lithographic procedure. (University of Twente)

- Drift volume (1mm-1m).
- Grid.
- Gain region.
- Pixel readout chip.

Gridpix detectors

- Drift volume E= ~0.1-1kV/cm.
- Grid.
- Gain region E= ~80kV/cm
- Timepix chip.

High resistive coating

- Deposit on the chip without killing the electronics.
- Quenching of discharges.
- Some conductivity to prevent net charge build up.
- Amorphous silicon (IMT Neuchatel), SiProt.
- Si₃N₄ , silicon nitride (Twente), SiNProt.
- Provoke discharges with α radiation to test the layer.

Discharge quenching

- 3 μm a-Si.
- Dummy anodes.
- Peak currents:
 - 6-7 amps on bare anode.
 - 3-4 amps on prot. anode.
- Reduced heat dissipation.

Discharge quenching

Pixelman software: IEAP, Prague

Recent developments

- Charge per pixel reduced to ~ pC →
- Medipix 3 with input protection.
- chip with 7 μ SiNProt still alive after >10 days.
- At Twente both Ingrid and SiNProt can be applied! → post processing faster and cheaper.

Discharge on a SiNProt covered Timepix chip.

Discharge test structure

- Foolproof test structures.
- To quantify:
 - Time of discharge
 - Amount of charge
 - charge density distribution
- As function of:
 - SiProt thickness
 - Gas mixture
 - Voltage

= SU8 dike

MPGD ageing

Fred Hartjes NIKHEF

Magic or science?

2nd RD51 collaboration meeting Paris, October 13 - 15, 2008

detector?

Relative

gas gain

- Loss of avalanche gain
 - Rapid or slower

- Broadening amplitude spectrum
 - -=> More variation gain

Incressed

detectors

- Figure of merit: accumulated charge on the anode surface
 - Kadyk (I. Juricic, JA= Radyk,ⁿProceedings Workshop on Radiation Damage to Wire Chambers, Berkeley 1986, p. 141)

$$C = \frac{1}{Q} * \frac{\Delta A}{A}$$

where

- Q is the accumulated charge per cm anode (wires or strips) or cm² (MPGD, PPC,)
- G is the gas gain
- D is the dose (particles per cm resp cm²
- n_e is the primary ionisation per hit
- Define the ageing rate R (%/C/cm) or (%/C/cm²) as

Competition: ageing of silicon sensors

- Figure of merit: n_{eq} dose
 - Damage from applied radiation converted into damage from radiation caused by 1 MeV neutrons
 - -=> easy evaluation of radiation hardness
 - Often using neutrons from nuclear plant for ageing characterisation
- Nature of cilicon concor damage

gaseous detectors

Wire chamber: 1/R amplification field

GEM: amplification field across ~ 25 μm (high at the edges of the hole)

Anode NOT close to avalanche

F. Sauli, Nucl. Instr. and Methods A386(1997)531

MSGC: dipole amplification field Very high field at cathode edge

CATHODE STRIPS A.Oed, Nucl. Instr. and Meth. A263(1988)351

Micromegas: homogeneous amplification field across 50

Y. Giomataris et al, Nucl. Instr. and Meth. A376(1996)239

Micromegas

technology

- Polymerisation will be mainly at the end of the avalanche where the electron density is highest
 - A few µm away from the anode
 - Exception: GEM
- Key issue
 - Whta is the field at the anode surface?
 - High field => high avalanche temperature

Field strength (E) along the central drift path (X) to the anode for three different electrode geometries

R. Bouclier et al, Nucl. Instrum. Methods A 381 (1996) 289

Result

- At accumulated charge 2.8 mC/cm (peak value)
- Strong unexpected ageing effect
 - No ageing downstream

Design recommendations

- Reduce field on cathode surface as much as possible
- Use the cleanest materials you can afford (NASA and CERN database)
 - But there's no need getting bankrupt
- Add filter at the in coming gas close to the detector (molecular sieve 5A)
- Consider adding special ageing chamber for advance cleaning (see LHCB experience)
- But don't expect this to be absolutely safe to prevent ageing
- Do as much ageing prototype tests as you can on as much different conditions to get an impression of the robustness of your detector
 - Different particles
 - Different irradiation rates
 - Different sites

Operational recommendations

- While running, monitor the chamber performance on a daily basis and take immediate action when observing ageing phenomena
- Don't change from gas supplier while running an experiment
- Be prepared to apply additives
 - CF₄ + oxygen containing molecule like CO₂ or alcohols
 - Water (active moisture control and monitoring), don't let it pass the 1% limit
 - => But be aware that these measures might worsen the situation in your specific case

some thoughts on charging-up effects

HvdG, Nikhef RD51 Workshop, Paris, 2008

Micro Strip Gas Counters: hard to operate:

- discharges, ruining electrodes
- ageing

! Very strong electric field in insulator's volume & surface !

GEM Production

RIKEN/SciEnergy GEM

(thick-foil and fine-pitch)

pitch 80um hole 40um thickness 100um

Remove copper by wet etching

Irradiate CO₂ laser

Remove remaining edge from the other side

Gain instability (RIKEN GEM)

No increase and decrease just after HV on.

- No gain increase in short measurements
- This is not for a special batch of GEMs but for all GEMs we produced
- Possible reasons;
 - ✓ Less charging-up due to cylindrical hole shape
 - ✓ Less polarization of Liquid Crystal Polymer

GemGrid 1

conductivity of kapton

Micromegas on pillars

Charge-up effects

After (rapid) ramping of HV:

polarisation: reduction of E-field in insulator (bulk) volume
 In homogeneous field with insulator // to field: nothing

With E component perp. on insulating surface: modification of potential by hitting e- and/or ions until E // surface

GEM hole

equalizing with water

Stronger effects for good insulator

Very preliminary:

Use as little as possible insulating surfaces // strong E fields

Even more preliminary:

As for gain: GEMs perform les than (corresponding) Micromegas

Plans for

MPGD Radiation hardness tests for full detectors and components

Matteo Alfonsi, **Gabriele Croci**, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski CERN GDD Group

2nd RD51 Collaboration Meeting
Paris 13-15 October 2008

Working Group 2

Outline

- Full Detector Tests
 - Standard Triple GEM
 - Bulk MicroMegas
 - THGEM
- Components Tests
 - Standard Triple GEM components
 - Electrical Tests
 - Mechanical Tests

Method followed for Full Detectors

- ➤ Make a series of measurement before putting this detector in beam of ⁶⁰Co photons
- ➤ We would like to know if the performance of the detector is changed after strong irradiation (Total integrated dose of 10⁶-10⁷ Gy)

List of measurements

- Gain
- Rate Capability
- Discharge Probability
- Time Charging up Scan Type 1: Power on the detector and start to irradiate at the same time
- Time Charging up Scan Type 2: Power on the detector before starting the irradiation
- 2D Test (for Triple GEM)
- Test of uniformity over active area
- Counting plateau

What might happen after strong irradiation..

- Gain → For TGEM, if the kapton resistivity is changed we can have less gain than before at the same voltage; it may happen that this variation may only be on the irradiated spots.
- Gain variation with time

 The detector can have different charging up proprerties

•

The Triple GEM Detector used

10 x 10 cm² Active Area Gas Mixture used Ar/C0₂ 70%/30%

C. Altumbas et al, NIM A490(2002)177

Measurements performed so far (before irradiation)

Radiation Hardness tests of Triple GEM detector components

- Materials to be tested:
 - GEM Polyimide (Apical AV Kaneka)
 - Glue (Araldite AY103) + Hardener (HY951)
 - Frames Material (Permaglas)
- Tests to be performed
 - Electric Test
 - Measure kapton resistivity before and after gammas irradiation
 - Mechanical Tests: make mechanical tests on components that represent crucial part of detector assembly
 - Shear Test
 - Peeling Test

We found a very old paper on

R.G. Filho et al, Kapton irradiated by X-Rays", IEEE Transactions on Electrical Insulation Volume El-21 No. 3, June 1986

Kapton Samples of 80 mm diameter with thickness varying from 6 to 75 μ m were irradiated with W X-Rays for several hours; They saw a variation of the Kapton conductivity

Fig. 14: Kapton: RIC as a function of time for different exposure rates.

First Lab Irradiation Test (prelim. results)

Measurement of Induced Conductivity inside a copper-clad 50 μm thick kapton foil (GEM w/o holes)

This copper-clad kapton foil was powered with 500 V and irradiated at very high rate in open air with Cu X-Rays to understand if irradiation will vary its conducibility. Since measurement was performed in open air, air ionisation could be a problem.

The current flowing from the top to the bottom electrode was monitored during irradiation

Measurement of Induced Conductivity inside a copper-clad kapton foil (GEM w/o holes)

Shear Test Samples

Peeling Test Samples

Previous studies on Araldite AY103 +HY951

Studies made at CERN some years ago on the same glue used in Triple GEM detectors assembly

Compilation of radiation damage test data, 4. / Guarino, Francesco et al. CERN-2001-006. - Geneva: CERN, 2001. - 131 p.

Material: Epoxy structural adhesive Type: Araldite AY 103/HY 951 (100/8)

Supplier: Ciba-Geigy

Test method: Shear test with aluminium samples Sample geometry: Equivalent to ASTM D 1876-93

Surface treatment: Sand blasting

Polymerization temperature: 25°C

Radiation source: Cobalt 60 and Switched-off reactor

Absorbed dose (MGy)	Dose rate (kGy/h)	Shear strength (MPa)	Deformation at break (%)	Young's modulus (GPa)
0	0	8.9 ± 0.6	0.23 ± 0.03	13.2 ± 6.6
1	4	8.3 ± 0.5	0.18 ± 0.04	16.6 ± 1.1
3	4	8.4 ± 0.3	0.21 ± 0.01	19.7 ± 1.8
10	20	0.0	0.0	_

ID No. M 523

Critical property = deformation at break Radiation index (RI) \sim 6.7 at a mean dose rate of 4 kGy/h

Present Situation

 We are performing the tests before irradiation but now we need to find a ⁶⁰Co irradiation facility!!!!

ANY SUGGESTIONS?????

Is anybody interested in irradiating other detectors or components ???

Digital primary electron counting: W, Fano Factor, Polya vs Exponential

M. Chefdeville, NIKHEF, Amsterdam RD51, Paris, 13-15 October 2008

⁵⁵Fe quanta conversions seen by GridPix

After large drift distance, primary e separate and can be counted

Gas mixture: Ar/iso 95/5

⁵⁵Fe quanta conversions seen by GridPix

Look at the escape peak only (smallest number of primary electrons)

Measurements of W and F

What is measured is the mean and variance of the number of detected electrons (N_d, V_d)

Correction for limited collection and detection efficiencies yield $N_{\rm p}$ and $V_{\rm p}$

$$W = E_0 / N_p$$
$$F = V_p / N_p$$

Collection and detection eff. should be known

⁵⁵Fe X-ray E₀

5.9 and 6.5 keV

Detection efficiency

$$\kappa = \int_{t}^{\infty} p(g).dg$$

Exponential fluctuations:

$$\kappa(g) = \exp(-t/\langle g \rangle)$$

Polya-like fluctuations: parameter m=1/b ~ 2 with \sqrt{b} the relative rms $\kappa(2,g) = (1+2.t/<g>) \cdot \exp(-2.t/<g>)$

Detection efficiency will be determined by fitting $\kappa(g)$ to (N_d, V_{grid}) data points

Detectors

Two measurement periods

Timepix chip # 1:
Standard InGrid
Low event

statistics
Timepix chip #2 :
Increased event
statistics
New GEMGrid structure

Filter out 6.5 keV with

Chamber geometry:

10 cm field cage

Guard electrode surrounding the chip (inside chamber)

Measured spectra at -330 V

Timepix #1

Timepix #2

5.9 and 6.5 keV escape events (event ratio ~ 7:1)

5.9 and 6.5 keV escape events (event ratio ~ 50:1)

Peak position and grid voltage

Asymptotic value of N_d gives the number of collected electrons N_c Polya fit works very well where exponential one (not shown) fails!

- Compatible with the smaller hole diameter of InGrid #2
- Contribution from collection efficiency to peak width now known

W and F in Ar/iso 95/5 at 2.9 keV

Assume full collection efficiency of detector #1 $N_p = N_c = 115 \pm 2 e$

$$W = 25.2 \pm 0.5 \text{ eV}$$

Extrapolation to 5.9 keV photo-peak straightforward

$$N_p = 230 \pm 4 e$$

Peak width measured with detector #2 corrected for detection and collection eff. (87 %)

 $RMS(N_p) \sim 4.3 \%$

 $F = 0.21 \pm 0.06$

Compatible with literature

 $W = 25.0 \pm 0.6 \text{ eV}$

 $F = 0.250 \pm 0.010$

Ar/iso 20/80 - 1253 eV X-rays

from Pansky. et al.

J. Appl. Phys. 79 (1996) 8892

T2K Test Bench results on uniformity and reproducibility of Micromegas production

A. Ferrero*

for TRIUMF, University of British Columbia, University of Victoria, IRFU-CEA/Saclay, RWTH Aachen University, INFN Italy, Barcelona University, Valencia University and University of Geneve*

RD51 Collaboration Meeting, October 14 2008

- Measurements performed at the nominal mesh voltage of -350V
- Each bin in the 2D map represents one pad (36 \times 48 matrix)
- Signal amplitude dispersion: ~4% RMS

Scintillation Readout From THGEMs operating in xenon

Joaquim M.F. dos Santos

University of Coimbra;

University of Aveiro

Weizmann Institute of Sciences

Universidad Autónoma de Barcelona/ Universidad Politécnica de Valencia

2nd RD51 collaboration meeting 13-15 Oct. 2008, Paris

Recent Relevant Applications of Optical TPCs

Double Beta decay Experiments

NEXT – Neutrino Xenon TPC

Dark Matter search

XENON, LUX, ZEPELIN, WARP experiments

- Secondary scintillation amplification, for higher sensitivity, with PMT/LAAPD readout
 - Double mesh, uniform field scintillation gap
 e.g. secondary scintillation yield of

466 photons/e⁻/cm @ 4.1 kV/cm/bar (C.M.B. Monteiro et al., J. Inst. 2 P05001)

Scintillation in hole-type microstructures, e.g. THGEMs

RD51 Paris Oct. 2008

MPGD scintillation vs. charge readout

A.S. Conceição, et al., J. Inst. 2 P09010

RD51 Paris Oct. 2008

GEM scintillation vs. charge readout

LAAPD gain ~130 - 150

THGEM scintillation vs. charge readout

RD51

Paris

THGEM scintillation – Energy Resolution

RD51

Oct. 2008

Scintillation and charge pulses correlation

RD51 Paris Oct. 2008

Scintillation and charge correlated spectra

RD51 Paris Oct. 2008

Scintillation and charge corrected spectra

Test Beam Measurements for a TGEM Based Trigger Detector

ELTE, MTA KFKI RMKI Collaboration

(Budapest, Hungary):

G. Bencze, L. Boldizsár, G. Hamar,

L. Kovács, P. Lévai, D. Varga

RD51 Collaboration Meeting, 13-15.10.2008., Paris