Constraining composite Higgs models with direct and indirect searches

Presented by Peter Stangl

Excellence Cluster Universe Technische Universität München

Outline

- 1 Composite Higgs models
- 2 Analysis method
- 3 Analysis of a specific model
- 4 Conclusions

Based on:

Christoph Niehoff, PS, David M. Straub [arXiv:1508.00569]

Outline

1 Composite Higgs models

- 2 Analysis method
- 3 Analysis of a specific model
- 4 Conclusions

Composite Higgs models

Solving the naturalness problem

- Higgs not elementary but bound state of new strong interaction.
- Lightness of Higgs compared to new physics scale:
 Higgs as pseudo-Nambu-Goldstone boson (pNGb) of spontaneously broken global symmetry.

 $\mathcal{L} = \mathcal{L}_{\textit{elemenary}} + \mathcal{L}_{\textit{composite}}$

Kaplan, Georgi, Phys.Lett. B136 (1984) 183 Dugan, Georgi, Kaplan, Nucl.Phys. B254 (1985) 299 see also talks by Brian Batell and Kiel Howe

Composite Higgs models

Solving the naturalness problem

- Higgs not elementary but bound state of new strong interaction.
- Lightness of Higgs compared to new physics scale:
 Higgs as pseudo-Nambu-Goldstone boson (pNGb) of spontaneously broken global symmetry.

$$\mathcal{L} = \mathcal{L}_{elemenary} + \mathcal{L}_{composite} + \mathcal{L}_{mixing}$$

Avoiding flavour constraints

- ► Elementary fermions couple linearly to composite fermions.
- Mass eigenstates are mixture of both: partial compositeness.

Kaplan, Nucl. Phys. B365 (1991) 259-278

see talk by Francesco Sannino for problems of UV completions and alternatives

Outline

Composite Higgs models

2 Analysis method

3 Analysis of a specific model

4 Conclusions

The Goal and the challenge

The goal

Use a single framework to constrain the parameter space of a CHM by

- Radiative electroweak symmetry breaking
- Higgs physics
- Electroweak precision tests
- Flavour physics
- Direct LHC bounds on fermion and vector boson resonances

The Goal and the challenge

The goal

Use a single framework to constrain the parameter space of a CHM by

- Radiative electroweak symmetry breaking
- Higgs physics
- Electroweak precision tests
- Flavour physics
- Direct LHC bounds on fermion and vector boson resonances

The challenge

Parameter space does not "factorize" into Standard Model and new physics parameters.

- Partial compositeness: fermion masses and CKM parameters are complicated functions of many model parameters.
- Dynamically generated Higgs potential: depends on gauge boson and fermion masses and couplings.

Strategy

The method

- Brute-force scan of parameter space not applicable.
- Instead, construct χ^2 -function from all observables:

$$\chi^2(\vec{\theta}) \equiv \sum_{i \in \text{ observables}} \left(\frac{\mathcal{O}_i^{\text{th}}(\vec{\theta}) - \mathcal{O}_i^{\text{exp}}}{\sigma_i^{\text{error}}} \right)^2$$

Given a parameter point $\vec{\theta}$, it measures "how close" theoretical predictions $\mathcal{O}_i^{\text{th}}(\vec{\theta})$ are to experimental observations $\mathcal{O}_i^{\text{exp}}$.

• Numerically minimizing χ^2 -function yields "good" parameter points.

Strategy

The method

- Brute-force scan of parameter space not applicable.
- Instead, construct χ^2 -function from all observables:

$$\chi^2(\vec{\theta}) \equiv \sum_{i \in \text{ observables}} \left(\frac{\mathcal{O}_i^{\text{th}}(\vec{\theta}) - \mathcal{O}_i^{\text{exp}}}{\sigma_i^{\text{error}}} \right)^2$$

Given a parameter point $\vec{\theta}$, it measures "how close" theoretical predictions $\mathcal{O}_i^{\text{th}}(\vec{\theta})$ are to experimental observations $\mathcal{O}_i^{\text{exp}}$.

• Numerically minimizing χ^2 -function yields "good" parameter points.

Still technically challenging

- Large dimensionality (ca. 30-50 parameters depending on specific model).
- Complicated dependence on all parameters.

Implementation

Numerical minimization

- 1. Generate (random) starting points.
- 2. Use global minimizer [NLopt] to find viable region.
- 3. Use Markov Chain Monte Carlo [pypmc] to sample viable parameter space.
- 4. Keep only points satisfying each individual constraint at 3σ level.

Implementation

Numerical minimization

- 1. Generate (random) starting points.
- 2. Use global minimizer [NLopt] to find viable region.
- 3. Use Markov Chain Monte Carlo [pypmc] to sample viable parameter space.
- 4. Keep only points satisfying each individual constraint at 3σ level.

Computations

performed on the C2PAP computing cluster in Munich.

Outline

- Composite Higgs models
- 2 Analysis method
- 3 Analysis of a specific model
- 4 Conclusions

- Calculable Higgs potential
- Minimal particle content

Deconstructed model 4DCHM with two sites.

De Curtis, Redi, Tesi, arXiv:1110.1613

- Calculable Higgs potential
- Minimal particle content
- Only one Higgs doublet
- Custodial symmetry protecting *T* parameter

Deconstructed model 4DCHM with two sites.

De Curtis, Redi, Tesi, arXiv:1110.1613

 \Rightarrow Minimal SO(5)/SO(4) coset.

- Calculable Higgs potential
- Minimal particle content
- Only one Higgs doublet
- Custodial symmetry protecting *T* parameter
- Custodial protection of Z b_L b
 _L coupling
- Minimal particle content

Deconstructed model 4DCHM with two sites.

De Curtis, Redi, Tesi, arXiv:1110.1613

 \Rightarrow Minimal SO(5)/SO(4) coset.

Composite quarks in fundamental **5**-representations, no composite leptons.

Agashe et al., arXiv:hep-ph/0605341 Contino et al., arXiv:hep-ph/0612048

 \Rightarrow

- Calculable Higgs potential
- Minimal particle content
- Only one Higgs doublet
- Custodial symmetry protecting *T* parameter
- Custodial protection of Z b_L b
 _L coupling
- Minimal particle content
- Suppression of contributions to ΔF = 2 observables

Deconstructed model 4DCHM with two sites.

De Curtis, Redi, Tesi, arXiv:1110.1613

 \Rightarrow Minimal SO(5)/SO(4) coset.

Composite quarks in

⇒ fundamental 5-representations, no composite leptons.

Agashe et al., arXiv:hep-ph/0605341 Contino et al., arXiv:hep-ph/0612048

Flavour symmetry only broken by \mathcal{L}_{mixing} .

We consider four cases: $U(3)_{LC}^3$, $U(3)_{RC}^3$, $U(2)_{LC}^3$ or $U(2)_{RC}^3$.

Cacciapaglia et al., arXiv:0709.1714, Redi, Weiler, arXiv:1106.6357 Barbieri, Buttazzo, Sala, Straub, arXiv:1203.4218

 \Rightarrow

Nucl. Phys. B306 (1988) 63

Results

No viable parameter points for $U(3)^3_{LC}$

► Very strong constraints from electroweak precision tests and CKM unitarity.

cf. Barbieri, Buttazzo, Sala, Straub, arXiv:1211.5085

$U(2)^3_{LC},\,U(2)^3_{RC}$ and $U(3)^3_{RC}$ flavour structures

- All constraints can be passed.
- ► Fine tuning $\Delta_{BG} < 100$ possible. $\Delta_{BG} = \max_{i \in \text{ parameters}} \left| \frac{\partial \ln m_z}{\partial \ln \theta_i} \right|_{Barbieri, Giudice}$
- Tensions in rare B decays can be explained in some part of parameter space.
- Tension in $\Delta F = 2$ observables could be reduced in $U(2)^3$ models.
- LHC run 2 can test many of viable parameter points.

Outline

- Composite Higgs models
- 2 Analysis method
- 3 Analysis of a specific model

Conclusions

New numerical method

Employing a new numerical method, it is possible to constrain composite Higgs models by both direct and indirect constraints in a single framework.

Findings of first analysis

- $U(3)^3_{LC}$ flavour structure disfavoured.
- Fine tuning $\Delta_{BG} < 100$ possible.
- ► Tensions in rare *B* decays could be explained.
- Tension in $\Delta F = 2$ observables could be reduced in $U(2)^3$ models.
- ► LHC run 2 can test many of viable parameter points.

More details

Christoph Niehoff, PS, David M. Straub [arXiv:1508.00569]

Backup slides

Fine-tuning

Barbieri-Giudice measure

$$\Delta_{\text{BG}} = \max_{i \in \text{ parameters}} \left| \frac{\partial \ln m_Z}{\partial \ln \theta_i} \right| \qquad \qquad \text{Barbieri, Giudice,} \\ \text{Nucl. Phys. B306 (1988) 63}$$

quantifies sensitivity of weak scale to variations in model parameters θ_i .

Light quark compositeness

Results for hadronic *Z* width and dijet angular distributions

Light quark compositeness

Results for CKM unitarity

No relevant constraint from first-row CKM unitarity on *RC* models.

Rare B decays

Tensions between SM and data

Recent fits prefer a negative shift in Wilson coefficient C_9 (and possibly positive in C_{10}):

Rare B decays

Tensions could be explained

- ▶ We find points with negative shift in C₉.
- Then, we predict light neutral vector resonance (with large BR to $t\bar{t}$).

Mixing phases in B_d^0 and B_s^0 system

Indirect CP violation in K⁰ mixing

Facing new lattice results

Tension between $\Delta M_d / \Delta M_s$ and ϵ_K increased.

Fermilab Lattice, MILC, arXiv:1602.03560 Blanke, Buras, arXiv:1602.04020

Reducing the tension	$U(2)^{3}_{LC}$	$U(2)^3_{RC}$	$U(3)^3_{RC}$	
$\Delta M_d/\Delta M_d^{ m SM} < \Delta M_s/\Delta M_s^{ m SM}$	\checkmark	\checkmark	x	
$\phi_{d} - \phi_{d}^{\rm SM} \neq 0$	\checkmark	x	x	
$ \epsilon_{\mathcal{K}} / \epsilon_{\mathcal{K}}^{\mathrm{SM}} > \Delta M_d/\Delta M_d^{\mathrm{SM}}$	x	\checkmark	x	

Quark partner searches

Included experimental analyses

20 different analyses from ATLAS, CMS and CDF included into numerics.

Gaps in experimental analyses

Quark partner searches

Included experimental analyses

20 different analyses from ATLAS, CMS and CDF included into numerics.

Gaps in experimental analyses

Quark partner searches

Vector partner searches

Included experimental analyses

14 different analyses from ATLAS and CMS included into numerics.

Results

Additional constraints

In addition to the ones discussed in these slides, our analysis includes constraints from

- Higgs production and decay
- Oblique parameters
- Top decays