Status and perspectives with exotic states at LHCb Results and prospects

A. Augusto Alves Jr, on behalf of the LHCb collaboration.

University of Cincinnati aalvesju@cern.ch

LHC SKI 2016, A first discussion of 13 TeV results, 10-15 April 2016, Obergurgl

Outline

- The LHCb detector
- 2 Exotic states
- **3** Results on $P(4380)_{c}^{+}$
- Results on $Z(4430)^{+}$
- Oiscussion

The LHC environment

During most of 2012 run, LHC collided protons at 8 ${
m TeV}$ with an average instantaneous luminosity of 4 \times 10³²cm⁻²s⁻¹(LHCb) and 20 ${
m MHz}$ of bunch crossing.

- Inelastic cross section $\sim 60\,\mathrm{mb}$
- $\sigma(\mathrm{pp} o \mathrm{b} \overline{\mathrm{b}} X) = (284 \pm 20 (\mathrm{stat}) \pm 49 (\mathrm{syst}))~\mu\mathrm{b}$ [PLB 694, 209]
- ullet \longrightarrow $\sim 10^6~{
 m B\overline{B}}$ produced per second
- ullet $\sigma({
 m pp} o car c X)$ is about 20 times higher. [Nucl.Phys. B871 (2013) 1-20]

At the LHC energy, the $b\overline{b}$ pairs are produced preferentially at forward (backward) directions.

• Optimal design is a forward detector: LHCb

The LHCb detector

LHCb experiment was designed to perform high precision flavour physics measurements at the LHC

- Single-arm design. Covering the range 2 $< \eta <$ 5, LHCb can exploit the dominant heavy flavour production mechanism at the LHC and detects $\sim 40\%$ of the $b\overline{b}$ produced in forward region.
- Good particle identification. Excellent muon identification and good separation of π , K and p over (2 - 100) GeV.
- Good vertexing and tracking. Precise primary and secondary vertex reconstruction. Excellent momentum, IP and proper time resolution.
- These same features make LHCb very suitable for precision spectroscopy studies in the foward region.

The LHCb detector

Runs I and II

	Run I (2011 + 2012)	Run II (2016)
Bunch spacing	50ns	25ns
E_{cm}	$7\mathrm{TeV}/~8\mathrm{TeV}$	$13\mathrm{TeV}$
Luminosity	$1 + 2 \text{ fb}^{-1}$	$>$ 5 fb $^{-1}$
Bunches	up to 1262	~2622
,		'

- The calibration and alignment process takes place now automatically online.
- The stored data are immediately available offline for physics analysis (turbo stream).
- The "turbo" data sample keeps only information necessary to perform physics analysis with the offline quality
- See the Barbara's talk after the coffee break.

XYZ states

Many new states have been observed at Charm, b-factories and Tevatron

- Masses lying on the limits of the quarkonia spectrum
- Observed many different production mechanisms: ISR, e^+e^- , $\gamma\gamma$ and B decays.
- The measured masses do not correspond to the predicted values for conventional quarkonia.
- The properties do not fit very well to the quarkonia picture.

Many theoretical interpretations in discussion:

- conventional quarkonia:
- multiquark states;
- meson-molecules:
- hybrid mesons;
- threshold effects:

The table should be updated to include some new states: $P(4380)_{c}^{+}$, $P(4450)_{c}^{+}$...

[PoS Bormio 050(2015) arXiv:1511.01589]

$\Lambda_{ m b}^0 ightarrow{ m K}^-{ m pJ}\!/\!\psi$

Phys. Rev. Lett. 115 (2015) 072001

- Sample with >26.000 $\Lambda_b^0 \to \mathrm{K}^-\mathrm{pJ}/\psi$ signal candidates,
- Analysis: six-dimensional amplitude fit (invariant masses, helicity and decay planes angles).
- Background from sidebands. Estimated 5.4% of combinatorial background in the signal region.
- Six-dimensional efficiency calculated using complete simulation of the detector

$\Lambda_{ m b}^0 ightarrow { m K}^- { m pJ}\!/\!\psi$ Some analysis details

• Two parametizations: $\Lambda_b^0\to K^-(P_c^+\to pJ\!/\!\psi)$ and $\Lambda_b^0\to J\!/\!\psi(\Lambda^*\to pK^-)$, with $J\!/\!\psi\to\mu^+\mu^-$

Six-dimensional amplitude fit. Resonance invariant mass, three helicities angles, and two
differences between decay planes.

- Lorentz transformations relates the two helicity representantions.
- Resonances described by Breit-Wigner.
- Angular distribution calculated using helicity formalism.

$\Lambda_{\rm b}^0 \to {\rm K}^- {\rm pJ}/\psi$

Fit results with pentaquark states

- Fit including just well motivated Λ^* resonances (Reduced model).
- Two P_c⁺ states necessary to achieve acceptable fit quality.
- $P(4380)_c^+$ with $M=4380\pm 8\pm 29\,{
 m MeV/}c^2$ and $\Gamma=205\pm 18\pm 86\,{
 m MeV/}c^2$ $J^P=3/2^-$, fit fraction of $(8.4\pm 0.7\pm 4.2)\%$ and significance of 9σ
- $P(4450)_c^+$ with $M=4449.8\pm 1.7\pm 2.5\,{
 m MeV}/c^2$ and $\Gamma=39\pm 5\pm 19\,{
 m MeV}/c^2$ $J^P=5/2^+$, fit fraction $(4.1\pm 0.5\pm 1.1)\%$ and significance of 12σ
- ullet The mass resolution is approximately $2.5\,\mathrm{MeV}/c^2$ and combined significance 15σ

$\Lambda_{\rm b}^0 o \overline{{ m K}^- { m pJ}/\psi}$

Resonant character of the pentaquark state

- P(4450)⁺ amplitude is now described by 6 independent complex numbers instead of a Breit-Wigner
- Six equidistant points in the range $\pm\Gamma_0=39\,{
 m MeV}/c^2$ around $M_0=4449.8\,{
 m MeV}/c^2$ (from the default fit)
- Observe a fast change of phase crossing maximum of magnitude. Expected behavior for a resonance.
- Same test on $P(4380)_c^+$ leads to inconclusive results

Confirmation of $Z(4430)^+$ at LHCb

Phys.Rev.Lett.112, 222002 (2014)

- Sample with >25.000 ${
 m B^0}
 ightarrow {
 m K}^+\pi^-\psi(2S)$ signal candidates,
- Analysis performed using two different approaches:
 - Model dependent. Four-dimensional amplitude fit (invariant masses, helicity and decay planes angles).
 - \bullet Model independent. An analysis based on the Legendre polynomial moments extracted from the $K\pi$ system
- Background from sidebands. Estimated 4% of combinatorial background in the signal region.
- Four-dimensional efficiency calculated using complete simulation of the detector

A. A. Alves Jr Exotics states at LHCb April 14, 2016 11 / 30

$Z(4430)^{+1}$ Amplitude fit

• Fitted parameters:

$$M_{Z(4430)^{+}} = 4475 \pm 7_{-25}^{+15} \,\mathrm{MeV}/c^{2}, \Gamma_{Z(4430)^{+}} = 172 \pm 13_{-34}^{+37} \,\mathrm{MeV}/c^{2}$$

$$f_{Z(4430)^+} = (5.9 \pm 0.9^{+1.5}_{-3.3})\%$$

• Significance: $\Delta(-2lnL) > 13.9\sigma$

Resonance character and spin determination

- $J^P = 1^+$ assignment favored.
- Other J^P assignments are ruled out with large significance: $> 9\sigma$
- Z(4430)⁺ amplitude is described by 6 independent complex numbers instead of a Breit-Wigner
- Observe a fast change of phase crossing maximum of magnitude.
- Expected behaviour for a resonance.

Exotics states at LHCb

$Z(4430)^{+}$: model independent analysis

Phys. Rev. D 92, 112009 (2015)

- Very active $K\pi$ system.
- $m_{K\pi}$ taken directly from data, as it is.
- ullet Angular structure of the $K\pi$ system acquired via Legendre polynomials.

$$\bullet \ \ \tfrac{dN}{d\cos\theta_{K^*\mathbf{0}}} = \textstyle\sum_{j=0}^{l_{\max}} \langle P_j^U \rangle \mathrm{P}_j(\cos\theta_{K^*\mathbf{0}})$$

$$\bullet \ \ \langle P_j^U \rangle = \sum_{i=1}^{N_{\mathsf{reco}}} \frac{W_{\mathsf{signal}}^i}{\epsilon^i} \mathrm{P}_j(\cos\theta_{K^{*\mathbf{0}}}^i)$$

Resonance	${\rm Mass}~({\rm MeV}/c^2)$	$\Gamma \text{ (MeV/}c^2)$	J^P
$K^*(800)^0$	682±29	547 ± 24	0+
$K^*(892)^0$	895.81 ± 0.19	47.4 ± 0.6	1^{-}
$K^*(1410)^0$	$1414{\pm}15$	232 ± 21	1^{-}
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0_{+}
$K_2^*(1430)^0$	1432.4 ± 1.3	109 ± 5	2^{+}
$K^*(1680)^0$	1717 ± 27	322 ± 110	1^{-}
$K_3^*(1780)^0$	1776 ± 7	159 ± 21	3^{-}

$Z(4430)^+$: model independent analysis

Legendre polynomial moments

The rich angular structure of the $K\pi$ system is shown by the very featured Legendre polynomial moments.

$Z(4430)^+$: model independent analysis

$m_{\psi(2S)\pi}$ spectrum

- ullet The moments are normalized and used to predict, through a MC simulation, the expected $m_{\Psi(2S)\pi}$ spectrum.
- \bullet The order of the Legendre polynomial expansion depends on the locally dominant $\,K\pi$ resonances

$$I_{\mathsf{max}}(\mathrm{m_{K\pi}}) = \left\{ egin{array}{ll} 2 & \mathrm{m_{K\pi}} < 836 \, \mathrm{MeV}/c^2 \ 3 & 836 \, \mathrm{MeV}/c^2 < \mathrm{m_{K\pi}} < 1000 \, \mathrm{MeV}/c^2 \ 4 & \mathrm{m_{K\pi}} > 1000 \, \mathrm{MeV}/c^2. \end{array}
ight.$$

- Data points(black dots)
- MC prediction (blue solid line)
- Phase space MC (black dotted line)
- Phase space MC weighted to reproduce $m_{K\pi}$ (red line)

$Z(4430)^+$: model independent analysis Hypothesis test

- Performed using a series of pseudo-experiments produced according with I_{max} ($m_{K\pi}$).
- Hypothesis test based on likelihood ratio between $I_{\rm max}$ (${\rm m_{K\pi}}$) and $I_{\rm max}$ =30.
- Efficiency effects and background subtraction taken into account in the pseudo-experiment generation.

full $m_{K\pi}$ spectrum

$1.0 < \mathrm{m_{K\pi}} < 1.39 \, \mathrm{GeV}/c^2$

The hypotesis that the structure of the $m_{\psi(2S)\pi}$ spectrum can be described as a reflection of the activity of the resonances in the $K\pi$ system is ruled out with high significance.

▶ 4 ≣ ▶ ■ **9**0 0

Many other results in b and c spectroscopy

Access: http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html

18 / 30

LHCb publications

[to restricted-access page] PUBLICATIONS PER WORKING GROUP List of papers (Total of 284 papers)

FLAVOUR TAGGING
b-HADRONS AND QUARKONIA
${\cal B}$ decays to charmonium

DETECTOR PERFORMANCE CHARMLESS b-HADRON DECAYS

OCD, ELECTROWEAK AND EXOTICA RARE DECAYS

CHARM PHYSICS SEMILEPTONIC B DECAYS

LUMINOSITY B decays to open charm

тиш	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON
Search for the rare decays $B^0 o J/\psi \gamma$ and $B^0_s o J/\psi \gamma$	PAPER-2015-044	PRD	16 Oct 2015
Evidence for the strangeness-changing weak decay $\Xi_b^- \to \Lambda_b^0 \pi^-$	PAPER-2015-047	PRL	13 Oct 2015
A model-independent confirmation of the $Z(4430)^-$ state	PAPER-2015-038	PRD	07 Oct 2015
Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s}=13 { m TeV}$	PAPER-2015-041	JHEP	06 Oct 2015
Model-independent measurement of mixing parameters in $D^0 o K_S\pi^+\pi^-$ decays	PAPER-2015-042	JHEP	06 Oct 2015
Measurement of the forward-backward asymmetry in $Z/\gamma^* \to \mu^+\mu^-$ decays and determination of the effective weak mixing angle	PAPER-2015-039	IHEB	25 Sep 2015
Studies of the resonance structure in $D^0 o K_S^0 K^\pm \pi^\mp$ decays	PAPER-2015-026	PRD	22 Sep 2015
Forward production of \Upsilon mesons in pp collisions at $\sqrt{s}=7$ and STeV	PAPER-2015-045	JHEP	08 Sep 2015
Measurement of forward J/ψ production cross-sections in pp collisions at $\sqrt{s}=13{\text{TeV}}$	PAPER-2015-037	JHEP	02 Sep 2015
First measurement of the differential branching fraction and $C\!P$ asymmetry of the $B^\pm \to \pi^\pm \mu^+ \mu^-$ decay	PAPER-2015-035	јнер	01 Sep 2015
Measurement of $C\!P$ violation parameters and polarisation fractions in $B^0_s o J/\psi \overline{K}^{*0}$ decays	PAPER-2015-034	JHEP	01 Sep 2015
Study of the production of Λ^0_b and \overline{B}^0 hadrons in pp collisions and first measurement of the $\Lambda^0_b \to J/\psi pK^-$ branching fraction	PAPER-2015-032	Chin Phys C	01 Sep 2015
Measurement of the time-integrated CP asymmetry in $D^0 \to K_S^0 K_S^0$ decays	PAPER-2015-030	JHEP	25 Aug 2015
Search for hidden-sector bosons in $B^0 \! o K^{*0} \mu^+ \mu^-$ decays	PAPER-2015-036	PRL	17 Aug 2015
Measurement of the $B^0_s o\phi\phi$ branching fraction and search for the decay $B^0 o\phi\phi$	PAPER-2015-028	JHEP	04 Aug 2015
B flavour tagging using charm decays at the LHCb experiment	PAPER-2015-027	JINST	28 Jul 2015
Measurement of the branching fraction ratio ${\cal B}(B^+_arepsilon o \psi(2S)\pi^+)/{\cal B}(B^+_arepsilon o J/\psi\pi^+)$	PAPER-2015-024	PRD	13 Jul 2015
Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 o J/\psi K^- p$ decays	PAPER-2015-029	Phys. Rev. Lett. 115 (2015) 072001	13 Jul 2015
Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb	PAPER-2015-002	JHEP	30 Jun 2015
Angular analysis and differential branching fraction of the decay $B^0 \rightarrow \phi u^+ u^-$	PAPER-2015-023	IHEP	29 Jun 2015

Established results

$$P(4380)_{c}^{+}$$
 and $P(4450)_{c}^{+}$

- $P(4380)_{\rm c}^+$ observed with 9.0σ in multidimensional amplitude fit. Quantum numbers $J^P=3/2^-$
- $P(4450)_{\rm c}^+$ observed with 12.0σ in multidimensional amplitude fit. Quantum numbers $J^P=5/2^+$

$$Z(4430)^{+}$$

- Existence confirmed with $> 13.0\sigma$ in multidimensional amplitude fit and with $> 8.0\sigma$ in model independent analysis.
- Quantum numbers determined $J^P = 1^+$.
- Resonant behavior observed.

Will benefit from Run II statistics

$$P(4380)_{c}^{+}$$
 and $P(4450)_{c}^{+}$

- Resonance behavior observed for $P(4450)_c^+$, but Argant plot not conclusive for $P(4380)_c^+$.
- Increased statistics will hopefully help to settle the resonance character of $P(4380)_c^+$.

$$Z(4430)^{+}$$

- Evidence of a second state with reported in the amplitude fit, but not observed in model independent analysis. Argant plot not conclusive.
 - Fitted parameters:

$$M_{Z(4430)^{+*}} = 4239 \pm 18^{+45}_{-10} \text{ MeV}/c^2, \Gamma_{Z(4430)^{+*}} = 220 \pm 47^{+108}_{-74} \text{ MeV}/c^2$$

$$f_{Z(4430)^{+}} = (1.6 \pm 0.5^{+1.9}_{-0.4})\%$$

- Significance: $\Delta(-2lnL) > 6.0\sigma$
- Higher statistics from Run II will help to settle its existence and also its resonant behavior.

Thanks!

Backup

$\Lambda_{\rm b}^0 o { m K}^- { m pJ}/\psi$

Fit results without pentaquark states

- Fit including only Λ^* resonances, allowing all possible known states (Extended model)
- The masses and widths of the Λ* states are fixed to their PDG values
- The $m_{K_{\rm D}}$ distribution is reasonably well fitted
- The peaking structure in $m_{\mathrm{J/\psi}_{\mathrm{D}}}$ is not described

State	J^{P}	$M_0 \text{ (MeV)}$	$\Gamma_0 \text{ (MeV)}$	# Reduced	# Extended
A(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
A(1520)	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
A(1600)	$1/2^{+}$	1600	150	3	4
A(1670)	$1/2^{-}$	1670	35	3	4
A(1690)	$3/2^{-}$	1690	60	5	6
A(1800)	$1/2^{-}$	1800	300	4	4
A(1810)	$1/2^{+}$	1810	150	3	4
A(1820)	$5/2^{+}$	1820	80	1	6
A(1830)	$5/2^{-}$	1830	95	1	6
A(1890)	$3/2^{+}$	1890	100	3	6
A(2100)	$7/2^{-}$	2100	200	1	6
A(2110)	$5/2^{+}$	2110	200	1	6
A(2350)	$9/2^{+}$	2350	150	0	6
A(2585)	?	≈2585	200	0	6

$\Lambda_{\rm b}^0 o { m K}^- { m pJ}/\psi$: Systematic uncertainties

Table 2: Summary of systematic uncertainties on P_c^+ masses, widths and fit fractions, and Λ^* fit fractions. A fit fraction is the ratio of the phase space integrals of the matrix element squared for a single resonance and for the total amplitude. The terms "low" and "high" correspond to the lower and higher mass P_c^+ states. The sFit/cFit difference is listed as a cross-check and not included as an uncertainty.

Source	$M_0 \; ({\rm MeV}) \; \; \Gamma_0 \; ({\rm MeV})$			Fit fractions (%)				
	low	high	low	high	low	high	$\Lambda(1405)$	A(1520)
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P (3/2^+, 5/2^-) \text{ or } (5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L_{A_a^0}^{P_c} A_b^0 \to P_c^+ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{"} P_c^+ \text{ (low/high)} \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L_{A_b^0}^{A_n^*} A_b^0 \rightarrow J/\psi A^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

$\Lambda_{ m b}^0 ightarrow ar{ m K}^- { m pJ}\!/\!\psi$: Slices $m_{ m pJ}\!/\!\psi$

Figure 8: $m_{J/\psi p}$ in various intervals of m_{Kp} for the fit with two P_c^+ states: (a) $m_{Kp} < 1.55$ GeV, (b) $1.55 < m_{Kp} < 1.70$ GeV, (c) $1.70 < m_{Kp} < 2.00$ GeV, and (d) $m_{Kp} > 2.00$ GeV. The data are shown as (black) squares with error bars, while the (red) circles show the results of the fit. The blue and purple histograms show the two P_c^+ states. See Fig. 7 for the legend.

$\Lambda_{\rm b}^0 o { m K}^- { m pJ}/\!\psi$: Slices $m_{{ m KJ}/\!\psi}$

Figure 11: Projections onto $m_{J/\psi K}$ in various intervals of m_{Kp} for the reduced model fit (cFit) with two P_c^+ states of J^P equal to $3/2^-$ and $5/2^+$: (a) $m_{Kp} < 1.55$ GeV, (b) $1.55 < m_{Kp} < 1.70$ GeV, (c) $1.70 < m_{Kp} < 2.00$ GeV, (d) $m_{Kp} > 2.00$ GeV, and (e) all m_{Kp} . The data are shown as (black) squares with error bars, while the (red) circles show the results of the fit. The individual resonances are given in the legend.

$(Z(4430)^{+1})$

- Charged charmonium like state reported by Belle in $B^0 \to \psi(2S) K^+ \pi^-$ decays [Phys.Rev.D88:074026]
- Searched and not confirmed or excluded by BaBar [Phys.Rev.D79:112001]
- Can not be explained as conventional meson.
- Minimum quark content: $c\bar{c}u\bar{d}$
- No corresponding structure observed in $B^0 o J/\psi \, K^+\pi^-$

$Z(4430)^+$: model independent analysis

Phys. Rev. D 92, 112009 (2015)

The main goal is to check if the structures in the $\mathrm{m}_{\psi(2S)\pi}$ spectrum can be explained as reflections of the resonance activity in the $K\pi$ system.

- No assumptions on the shape and coupling of the K^* resonances.
- Only its maximum J is restricted.

$Z(4430)^+$: model independent analysis Slices of $m_{K\pi}$

Toy Monte Carlo prediction in slices of $m_{K\pi}$.

- Data points(black dots)
- MC prediction (blue solid line)
- \bullet Phase space MC weighted to reproduce $\mathrm{m}_{\mathrm{K}\pi}$ (red line)
- Clear disagreement between data and MC on the slice $1.0 < {\rm m_{K\pi}} < 1.39\,{\rm GeV}/c^2$

$Z(4430)^+$: model independent analysis

Additional studies: $I_{max} \leq 4$

- Setting the maximum Legendre polynomial order to four, independent of $m_{K\pi}$
- This corresponds to suppose the $K\pi$ system has S,P and D waves contributing in all regions.
- Data can not be reproduced

-2∆NLL

$Z(4430)^+$: model independent analysis

Additional studies: $I_{\text{max}} \leq 6$

- Setting the maximum Legendre polynomial order to six, independent of $m_{K\pi}$
- This corresponds to suppose the $K\pi$ system has S, P, D and F waves contributing in all regions.
- Data still can not be reproduced

