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Perturbation theory meltdown and Beyond



¥ The model: the Weak sector of the SM: SU(2) + Higgs 

¥ Investigate scattering processes at ~100 TeV CoM energies E 

¥ Concentrate on n~100s of Higgses and W,ZÕs produced in the Þnal state.                 
n times lambda >> 1 or n times alpha_weak >>1. 

¥ Two distinct classes of high-E processes with such Þnal states are of interest: 

¥  Non-perturbative (B+L)-violating processes (sphalerons and instantons => 
tunneling) 

¥ Ordinary perturbative high-n processes (expansion around standard 
perturbative vacuum) 

¥  Sphaleron mass is a new scale in the SM at ~10 TeV so that at > 30 TeV a 
possibility of new non-perturbative dynamics in the SM 

¥ Perturbative high-E behaviour presents an easier problem to tackle  

¥ Our trusted weakly coupled perturbation theory breaks down: Amplitudes~n!



FIRST: Perturbative large-n 
amplitudes

¥ 1*->n on mass threshold at tree level: Recursion relations & 
classical solutions general technique -Brown 1992  

¥ Results in factorial growth of amplitudes in: 

¥ (a) unbroken phi^4 theory  

¥ (b) scalar theory with the VEV 

¥ (c) Gauge-Higgs theory (spontaneously broken gauge theory) 

¥ Perturbative growth generalises to more realistic  2 -> n



         Tree-level amplitudes in phi^4 on mass threshold
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         Brown 9209203
The generating function of tree amplitudes on multiparticle thresholds is a clas-
sical solution. It solves an ordinary di↵erential equation with no source term,

d2t� + M2� + ��3 = 0 .

The solution contains only positive frequency harmonics, i.e. the Taylor expan-
sion in z(t),

�cl(t) = z(t) +
1X

n=2

dn z(t)n , z := z0 e
iMt

Coe�cients dn determine the actual amplitudes by di↵erentiation w.r.t. z,

A1!n =
✓

@

@z

◆n

�cl

����
z=0

= n! dn Factorial growth !!

�cl(t) =
z(t)

1 ! !
8M2 z(t)2

A1!n = n!
✓

�

8M2

◆ n ! 1
2



         Example 2: apply to phi^4 with SSB (Higgs-like)
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         Brown 9209203
L (h) =

1

2

(! h)2 !
"
4

!
h2 ! v2"2

,

The classical equation for the spatially uniform field h(t),

d2
t h = ! " h3

+ " v2 h ,

again has a closed-form solution with correct initial conditions hcl = v + z+ . . .

hcl (t) = v
1 +

z( t )
2v

1 ! z( t )
2v

, where z(t) = z0 eiM ht
= z0 ei

!
2! v t

hcl (t) = 2v
"#

n =0

$
z(t)
2v

%n

dn = v + 2v
"#

n =1

$
z(t)
2v

%n

,

i.e. with d0 = 1/ 2 and all dn # 1 = 1.

A 1$ n =

$
!
! z

%n

hcl

&
&
&
&
z=0

= n! (2v)1%n Factorial growth !!



         Gauge-Higgs theory: Tree-level threshold amplitudes
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          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:

hcl(z, wa) = 2v
!X

n=0

!X

k=0

d(n, 2k)
⇣ z
2v

⌘n
✓

wawa

(2v)2

◆k

,

Aa
L cl(z, wa) = wa

!X

n=0

!X

k=0

a(n, 2k)
⇣ z
2v

⌘n
✓

wawa

(2v)2

◆k

,

where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di! erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A (h ! n ⇥ h + m ⇥ ZL ) = (2v)1" n " m n!m! d(n, m) ,

and for the longitudinal Z decaying into n Higgses and m + 1 vector bosons,

A (ZL ! n ⇥ h + (m + 1)⇥ ZL ) =
1

(2v)n+m n! (m + 1)! a(n, m) .

Factorial growth reemains (in n and in m) !



         (More) physical 2 -> n processes 

7
V V

n H

¥ Our discussion so far involved an initial state of a single highly virtual
boson 1! ! n .

¥ In reality should look at physical scattering processes which are 2! n
with two on-shell initial particles.

¥ In the pure ! 4 scalar Þeld theory, both in the unbroken and in the broken
phase, it is actually known that tree-level amplitudes on the multiparticle
threshold for 2 ! n processes areexactly vanishing .

¥ But the pure scalar ! 4 theory (with a single self-coupling constant) is
known to be a special case; this vanishing was expected to hold in the
SM only for special Þne-tuned values of the couplings (Vector and Higgs
masses). Voloshin; Smith; Argyres, Kleiss, Papadopoulous 1992-94

¥ The processV V ! nH in the Gauge-Higgs theory retains then! growth.
Jaeckel and VVK 1411.5633.



IIb. Off the multi-particle 
threshold

¥ Tree level recursion relations & classical equations 

¥ Non-relativistic kinematics in the multi-particle Þnal state  

¥ Integration over the n-particle phase space                                  

¥ The holy grail 

¥ VVK 1411.2925 following the approach of                                                                  
Libanov, Rubakov, Son & Troitsky 9407381 and Son 9505338 in unbroken phi^4



         Off the mass-threshold in phi^4 (Higgs-like)
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! (! µ ! µ + M 2
h ) " = 3#v " 2 + # " 3

This classical equation for" (x) = h(x) ! v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P2
in ! M 2

h ) A n (p1 . . . pn ) = 3 #v
n!

n 1 ,n 2

$n
n 1 + n 2

!

P

A n 1 (p(1)
1 , . . . , p(1)

n 1
) A n 2 (p(2)

1 . . . p(2)
n 2

)

+ #
n!

n 1 ,n 2 ,n 3

$n
n 1 + n 2 + n 3

!

P

A n 1 (p(1)
1 . . . p(1)

n 1
) A n 2 (p(2)

1 . . . p(2)
n 2

) A n 3 (p(3)
1 . . . p(3)

n 2
)

Away from the multi-particle threshold, the external particles 3-momenta %pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

A n (p1 . . . pn ) = A n + M n E kin
n := A n + M n n &,

&=
1

n M h
E kin

n =
1
n

1
2M 2

h

n!

i =1

%p 2
i .

In the non-relativistic limit we have &" 1.



         Off the mass threshold
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¥ VVK 1411.2925

A n (p1 . . . pn ) = n! (2v)1! n
!

1 !
7
6

n ! !
1
6

n
n ! 1

! + O(! 2)
"

.

An important observation is that by exponentiating the order- n! contribution,
one obtains the expression for the amplitude which solves the original recursion
relation to all orders in (n! )m in the large-n non-relativistic limit,

A n (p1 . . . pn ) = n! (2v)1! n exp
#
!

7
6

n !
$

, n " # , ! " 0 , n! = Þxed .

Simple corrections of order! , with coe�cients that are not-enhanced byn are
expected, but the expression is correct to all ordersn! in the double scaling
large-n limit. The exponential factor can be absorbed into the z variable so
that

" (z) =
"%

n =1

dn

&
z e! 7

6 "
' n

,

remains a solution to the classical equation and the original recursion relations.

         Off-threshold in phi^4 with SSB (Higgs-like)
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! (! µ ! µ + M 2
h ) " = 3#v " 2 + # " 3

This classical equation for" (x) = h(x) ! v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P2
in ! M 2

h ) A n (p1 . . . pn ) = 3 #v
nX

n 1,n 2

$n
n 1+ n 2

X

P
A n 1 (p(1)

1 , . . . , p(1)
n 1

) A n 2 (p(2)
1 . . . p(2)

n 2
)

+ #
nX

n 1,n 2,n 3

$n
n 1+ n 2+ n 3

X

P
A n 1 (p(1)

1 . . . p(1)
n 1

) A n 2 (p(2)
1 . . . p(2)

n 2
) A n 3 (p(3)

1 . . . p(3)
n 2

)

Away from the multi-particle threshold, the external particles 3-momenta %pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

A n (p1 . . . pn ) = A n + M n E kin
n := A n + M n n &,

&=
1

n M h
E kin

n =
1
n

1
2M 2

h

nX

i =1

%p 2
i .

In the non-relativistic limit we have &" 1.

        Can now integrate over the phase-space



IIc. The Holy Grail
In the non-rel. limit for perturbative Higgs bosons only production we obtained:

! n ! exp
!
n

"
log

" n
4

" 1
#

+
3n
2

$
log

#
3$

+ 1
%

"
25
12

n #
&

More generally, in the large-n limit with " n = Þxed and # = Þxed, one expects

! n ! exp
!

1
"

Fh.g. (" n, #)
&

[e.g. Libanov, Rubakov, Troitsky review 1997]

where the holy grail function Fh.g. is of the form,

1
"

Fh.g. (" n, #) =
" n
"

(f 0(" n) + f (#))

In our higgs model, i.e. the scalar theory with SSB,

f 0(" n) = log
" n
4

" 1 at tree level

f (#) #
3
2

$
log

#
3$

+ 1
%

"
25
12

# for # $ 1



Large-n limit with ! n = Þxed and " = Þxed,

1
n

log#n =
1

! n
Fh.g. (! n, " ) = f 0(! n) + f (" )

In the pure unbroken $4 theory

f 0(! n) = log
! n
16

! 1 at tree level

f asympt (" ) =
3
2

!
log

"
3%

+ 1
"

!
17
12

" for " " 1

f asympt (! )

computed w MadGraph 2-> 7 for any epsilon and scaled to large n 

0.001 0.01 0.1 1 10 100

-12

-10

-8

-6

-4

-2

0

e

f!
e"

f !e" SSBtheory

¥ VVK 1504.05023
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f(eps) asymptotes to a const at large eps 
(highly relativistic Þnal state) 



1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

¥ VVK 1504.05023

2. Scale to large n using the known  
n-dependence in the holy grail
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in preparation: 

including triangles, boxes, É hexagons 
in the gluon fusion multi-higgs processes.
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  Loop corrections to tree-level amplitudes@threshold 
The 1-loop corrected threshold amplitude for the pure n Higgs production:

�4 with SSB : Atree+1loop

1!n = n! (2v)1�n

 
1 + n(n� 1)

p
3�

8⇡

!

There are strong indications, based on the analysis of leading singularities of the
multi-loop expansion around singular generating functions in scalar field theory,
that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 1994

A
1!n = Atree

1!n ⇥ exp
⇥
B �n2 + O(�n)

⇤

in the limit � ! 0, n ! 1 with �n2 fixed. Here B is determined from the
1-loop calculation (as above) – Smith; Voloshin 1992):

�4 with SSB : B = +

p
3

8⇡
,

�4 w. no SSB : B = � 1

64⇡2

⇣
log(7 + 4

p
3)� i⇡

⌘
,

In the Higgs model, 1st equation leads to the exponential enhancement of the
tree-level threshold amplitude at least in the leading order in n2�.



In the non-rel. limit for perturbative Higgs bosons only production we obtained:

! n ! exp
!
n

"
log

" n
4

" 1
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+
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log
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25
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&

More generally, in the large-n limit with " n = Þxed and # = Þxed, one expects

! n ! exp
!

1
"

Fh.g. (" n, #)
&

[e.g. Libanov, Rubakov, Troitsky review 1997]

where the holy grail function Fh.g. is of the form,

1
"

Fh.g. (" n, #) =
" n
"

(f 0(" n) + f (#))

In our higgs model, i.e. the scalar theory with SSB,

f 0(" n) = log
" n
4

" 1 at tree level

f (#) #
3
2

$
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#
3$

+ 1
%

"
25
12

# for # $ 1

RETURN to the beginning of the section:

+ 2 ! n2B

+ ! n

!
3

4"
a signiÞcant enhancement 

though higher orders unknown!



1. Compute cross-sections with MadGraph 2 -> 5,6,7 at all energies (i.e. arbitrary epsilon)

¥ VVK 1504.05023

2. Scale to large n using the known n-dependence in the holy grail 
including the leading-loop factor to the exponent
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¥ The perturbative cross section grows with energy, ultimately violating:

¥ the cosmic ray limit: upper bound comes from assuming that the effective cross 
section for inelastic scattering of cosmic rays is of the size of the universe. In this 
case high energy cosmic rays will be severely attenuated in conßict w observation.

¥ Jaeckel, VVK 1411.5633

¥ naive perturbative unitarity:
!

n, inelastic

"
d! n,m |A n,m |2 ! 8! (lmax + 1) 2 " ? 8!

¥ the observed form of the Z-peak via the Kallen-Lehmann spectral representation:

�(p) =
Z

p2 �m2
+

X

n�2

Z 1

(nm)2
ds

R
d�n|A(1 ! n)|2(s)

p2 � s

! !

(nm )2
ds

"
d! n |A (1 ! n)|2(s)

p2 " s
=

1
m2 C1+

p2

m4 C2+ . . . , |C1| < 1 , |C2| < 1

¥ pert. SM cross sections exceed these bounds at energies:
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"
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E ! 810 TeV naive unitarity limit

E ! 830 TeV cosmic limit

E ! 300 TeV asymptotic series truncation heuristic

E ! 100 TeV adding ! ! 2 term in f our pert . (! ) " (1/n ) log " n

E ! 35 TeV include naive loop factor! #n

#
3

4$
in f 0(#n)



Conclusions for the perturbative part 

¥ At (not too high) high energies p erturbative Standard Model exhibits a 
formal breakdown. Perturbative unitarity is broken.                OPTIONS: 

¥ At high energies (multiplicities) the Standard Model is fundamentally non-
perturbative (?)    

¥ The theory classicalizes: the ultra-high multiplicity processes will 
completely dominate everything else. At high energies above some 
E_critical start producing more and more of soft quanta. No longer able to 
probe shorter and shorter length scales with higher and higher energies  (?)                       

¥ New physics beyond the Standard Model has to set in before the cross-
sections become large (?) 

¥ New theoretical approaches & computational techniques have to be 
developed to determine the relevant energy scale                                  - 
almost as exciting as probing this at the FCC -



NEXT consider intrinsically Non-perturbative high-E large-n  processes

¥ Electroweak vacuum has a nontrivial 
structure (!)                 [SU(2)-sector ] 

¥ The saddle-point at the top of the barrier       
is the sphaleron. New EW scale ~ 10 TeV  

¥ Transitions between the vacua change B+L 
(result of the ABJ anomaly):                     
Delta (B+L)= 3 x (1+1) ;  Delta (B-L)=0  

¥ Instantons are tunnelling solutions between 
the vacua. They mediate B+L violation  

¥ 3 x (1 lepton + 3 quarks) = 12 fermions      
12 left-handed fermion doublets are involved  

¥ There are EW processes which are not 
described by perturbation theory!

Esph = c sph
mW

! W
! 10 TeV

B+L=0 B+L= 6

q + q ! 7øq + 3øl + nW W + nZZ + nhH
19

Baryon + Lepton number violation [much older story]



         Instanton approach

     Ringwald 1990 =>  McLerran, Vainshtein, Voloshin 1990 => É.  

q + q ! 7øq + 3øl + nW W + nZZ + nhH

A inst / e! Sinst
= e! 2! / " w ! ! 2 #2 v2

, �inst / e! 4! / " w ' 5⇥ 10! 162
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¥ All instanton contributions come with an exponential suppression due to the 
instanton action:  

¥ This is precisely the expected semiclassical price to pay for a quantum 
mechanical tunnelling process. 

¥ For the B+L violating process                                                                     

¥ at leading order, the instanton acts as a point-like vertex with a large number 
n of external legs => n! factors in the amplitude. 

¥ As the number of WÕs, ZÕs and HÕs produced in the Þnal state at sphaleron-
like energies is allowed to be large, ~ 1/alpha, the instanton crossection 
receives exponential enhancement with energy                                  



    Instanton-Antiinstanton valley   VVK & Ringwald 1991

I I

¥ Crossection is obtained by |squaring| the           
instanton amplitude. 

¥ Final states have been instrumental in 
combatting the exp. suppression. 

¥ Now also the interactions between the        
Þnal states (and the improvement on the point-
like I-vertex) are taken into account.  

¥ Use the Optical Theorem to compute Im part 
of the FES amplitude in around the   
Instanton-Antiinstanton conÞguration . 

¥ Higher and higher energies correspond to 
shorter and shorter I-Ibar separations R. At 
R=0 they annihilate to perturbative vacuum. 

¥ The suppression of the crossection is 
gradually reduced with energy.
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The holy grail function F

Mattis, Phys. Rept.1992 

Ringwald 2002

is a comprehensive review of the 90Õs literature on the holy grail

FW (! ) = 1 !
34/ 3

2
! 4/ 3 +

3
2

! 2 + O(! 8/ 3) + . . .

! =
"

ös/(4" mW /#W ) #
"

ös/(30 TeV)

First few terms in the energy-expansion of the holy grail:

     Instanton-Antiinstanton optimistic estimate
VVK & Ringwald 1991

ö! inst
qq !

1
m2

W

!
2"
#W

" 7/ 2

" exp

#

#
4"
#W

F hg

$ $
ös

4" mW / #W

%&

% (5.28" 1015 fb) " exp

#

#
4"
#W

F hg

$ $
ös

4" mW / #W

%&
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     Instanton-Antiinstanton optimistic estimate
VVK & Ringwald 1991
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0<F<1 at large E

  

The holy grail function F
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Pessimistic view:

The sphaleron is a semiclassical conÞguration with

Sizesph ! m! 1
W , Esph = few " mW / ! W # 10 TeV.

It is Ômade outÕ of! 1/ ! W particles (i.e. it decays into ! 1/ ! W WÕs, ZÕs, HÕs).

2initial hard partons $ Sphaleron $ (! 1/ ! W )soft Þnal quanta

The sphaleron production out of 2 hard partons is unlikely.

Assumptions:
(1) the intermediate state had to be the sphaleron;
(2) the initial state was a 2-particle state;
(3) that one cannot create (! 1/ ! W )soft Þnal quanta from 2initial hard partons .

24

But this reasoning does not hold in classicalizing theories: (Gia’s talk)

At high energies above some E_critical start producing more and more of soft 
quanta. No longer able to probe shorter and shorter length scales with higher 
and higher energies.



Optimistic view:
1. Use instanton, not the sphaleron as the guide. Initial hard quanta probe short 

distances, but are not prevented from probing larger scales as well, by emitting soft 
quanta. Instanton is a classical solution, thus:                    

25

Berends-Giele type 
recursion relations 

for the instanton current:

Classical equation:



¥ Electroweak sector of the SM is always seen as perturbative. If these instanton 
processes can be d etected Ñ> a truly remarkable breakthrough in realising & 
understanding non-perturbative EW dynamics 

¥ Numbers of W’s, Z’s and H’s produced in the Þnal state at 30-100 TeV energies is 
allowed to be large, ~ 1/alpha => a technical consequence of this fact is that         
the instanton crossection receives an exponential enhancement with energy        

¥ The B+L processes are accompanied by ~50 EW vector & H bosons; charged 
Lepton number can also be measured Ñ> unique experimental signature of the Þnal 
state  

¥ The rate of the B+L processes is still not known theoretically. There are optimistic 
phenomenological models  with ~pb  or ~fb  crossections, and there are pessimistic 
models with unobservable rates even at inÞnite energy.  

¥ Very hard theoretical problem, new computational methods are needed. 

¥ Since the Þnal state is essentially backgroundless, the obesrvability of the rate can be 
always settled experimentally. 

¥ B+L processes provide physics opportunities which are completely unique to the 
very high energy pp machine (100 TeV FCC pp).

26


