

Searches for SUSY at CMS in Leptonic Final States with 13 TeV Data

C. Vince Welke

University of California – San Diego

On behalf of the CMS experiment

Examples of SUSY Models with leptons

direct stop pair-production

Final state with many tops: high probability to decay to a lepton

Many final states in SUSY with leptons!

Final state with many leptons

Produces kinematic edge in M_{II}

Search Strategy

- Analyses target range of topologies with varying:
 - Visible energy (H_T, M_J)
 - Invisible energy (MET, M_T , M_{T2} , dφ(lep, W), L_T)
 - Jet multiplicity (N_{jets})
 - Flavor content (N_{b-tags})

CMS Analyses with 1 lepton

Direct stop search in 1L final state

Signal regions optimized for different mass splittings and decay modes

Suppress 1L and 2L bkgs by tight cuts on M_T and MT2W, respectively, and search in tails of the MET distribution

Search using sum of large-R jet masses

Cluster lepton & small-R jets into large-R jets and sum the masses

Sensitive to models where many tops are produced

Inclusive search

SM backgrounds largely reduced by cuts on L_T (Σp_T (lep)+MET), and $d\phi$ (lep, W) Signal region with no b-tags shown

Results of 1-Lepton Analyses

Direct stop search in 1L final state

Inclusive search

Search using sum of large-R jet masses

At 8 TeV excluded models with M_{gluino} up to 1350 GeV

 $\tilde{\chi}_1^0$

200

CMS Preliminary 2.3 fb⁻¹ (13 TeV)

 $pp \rightarrow \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow q \overline{q}' W^{\pm} \widetilde{\chi}^{0}_{+} NLO+NLL exclusion$

1200

1000

1600

m_ã [GeV]

CMS Analyses with Multiple Leptons

Same-sign Dileptons

Analysis designed to cover broad range of models and different mass splittings Signal regions split by two leading leptons' p_T , e.g. low-low (LL), high-low (HL) and high-high(HH)

Signal regions start at MET > 50 GeV

> Search in multiple bins across entire H_T range

Multi-lepton

Search in events with \geq 3 leptons & \geq 2 jets bin in N_{b-tags}, H_T, MET

categorize events as on-Z if at least one opposite sign dilepton pair has M_{II} consistent with M_{Z} (off-Z if otherwise)

Results of multi-lepton Analyses

At 8 TeV excluded models with M_{gluino} up to 950 GeV

Same-sign Dileptons

Sensitivity increases as # of high p_T leptons in final state increases

At 8 TeV excluded models with M_{gluino} up to 1050 GeV

Multi-lepton (≥ 3)

Limits approaching 8 TeV sensitivity

Exploring 8 TeV Excesses at 13 TeV: OS dilepton analysis

Physics Motivation

on-Z Signature

Search for new physics in Z(II) + jets + MET final state

Edge-like Signature

 Look for edge shape excess in the di-lepton invariant mass

Search Strategy

on-Z Signature

- Require OS dilepton pair with |M_{II} - M_Z| < 10 GeV, ≥ 2 jets and large MET and H_T
 - Additional cut on dφ(jets,MET)
 applied to reduce backgrounds
 where MET is largely due to
 mismeasurement of jets

Edge-like Signature

 Require OS dilepton pair with M_{||} > 20 GeV, ≥ 2 jets and large MET

CMS results at 8 TeV in OS dileptons

CMS on-Z results (M_{II} 81-101 GeV) no excess seen CMS edge results: (M_{II}: 20-70 GeV)

2.6 σ excess seen

Excesses seen at 8 TeV in OS dileptons

CMS on-Z results (M_{II} 81-101 GeV) no excess seen CMS edge results: (M_{II}: 20-70 GeV)

2.6 σ excess seen

ATLAS on-Z results at 8 TeV: 3.0 σ excess seen

ATLAS edge results at 8 TeV: no excess seen

Backgrounds

- DY Background w/ no real MET
 - Z+jets, WZ \rightarrow 2l2Q, ZZ \rightarrow 2L2Q ...
 - Predicted with γ+jets data
 - MET Template method
 - scale on-Z prediction for edge M_{II} regions

Backgrounds

Events/25 GeV

- DY Background w/ no real MET
 - Z+jets, WZ \rightarrow 2l2Q, ZZ \rightarrow 2L2Q ...
 - Predicted with γ+jets data
 - MET Template method
 - scale on-Z prediction for edge M_{II} regions
- Flavor Symmetric Background
 - Background where final state lepton flavors are not correlated
 - ttbar, single top, WW, DY $\rightarrow \tau \tau$
 - Predict ee+µµ with eµ data

Backgrounds

- DY Background w/ no real MET
 - Z+jets, WZ→2l2Q, ZZ→2L2Q ...
 - Predicted with γ+jets data
 - MET Template method
 - scale on-Z prediction for edge M_{II} regions
- Flavor Symmetric Background
 - Background where final state lepton flavors are not correlated
 - ttbar, single top, WW, DY→ττ
 - Predict ee+μμ with eμ data
- MC used for other SM processes
 - Including TTV, VV with real MET, and VVV, V= W,Z,H

MET Template Method

- Use γ+jets data to model MET spectrum in Z+jets
 - Z+jets and γ+jets events contain no "real" MET
 - leptons and γs are well-measured compared to jets
 - "fake" MET comes from jet mismeasurement

MET Template Method

- Use γ+jets data to model MET spectrum in Z+jets
- Reweight y p_T spectrum to expected Z p_T in data
 - pT shape different due to mass of Z

MET Template Method

- Use γ+jets data to model MET spectrum in Z+jets
- Reweight γ p_T spectrum to expected Z p_T in data
- Prediction normalized in Z+jets dominated region,
 i.e. MET < 50 GeV
 - Systematic uncertainties derived using MC
 - Derive templates with γ+jets MC to predict MET in Z+jets MC

OS Dilepton Results

- No excess seen in 13 TeV
 - Largest background from FS

	ATLAS-like SR	Edge SR		
Predicted	12.0+4.0	470.9 ± 29.9		
Observed	12	437		

Conclusion

- Wide variety of SUSY searches performed in leptonic final states with CMS in 2015
- re-analyzed OS dilepton regions where excesses were seen in run l
- No significant excesses seen at 13 TeV
- Looking forward to more data in 2016!

Backup

M_{II} Distribution in ATLAS-like Signal Region

- Background predictions from MC
- M_{II} shown after all other ATLAS-like cuts applied

1 lepton Stop Results

E_T^{miss} [GeV]

E _T ^{miss} [GeV]	Lost Lepton	1ℓ (not from top)	$t\bar{t}\to~1\ell$	$Z o u \overline{ u}$	Total background	Data		
	Compressed $\widetilde{\chi}_1^{\pm} - \widetilde{\chi}_1^0$: 2 jets, $t_{\rm mod} > 6.4$							
250 - 350	4.36 ± 1.44	2.61 ± 0.99	0.09 ± 0.09	0.60 ± 0.12	7.67 ± 1.73	8		
> 350	0.62 ± 0.23	0.98 ± 0.47	0.00 ± 0.03	0.36 ± 0.13	1.96 ± 0.54	5		
	Boosted High ΔM : 3 jets, $M_{T2}^{W} > 200 \text{GeV}$							
250 - 350	2.83 ± 0.73	0.92 ± 0.52	0.12 ± 0.12	0.64 ± 0.13	4.51 ± 0.91	8		
> 350	0.74 ± 0.21	0.88 ± 0.50	0.05 ± 0.05	0.41 ± 0.09	2.08 ± 0.55	2		
	Low ΔM : ≥ 4 jets, $M_{T2}^{W} \leq 200 \text{GeV}$							
250 - 325	22.97 ± 3.21	0.61 ± 0.61	0.88 ± 0.88	0.74 ± 0.17	25.20 ± 3.38	14		
> 325	7.85 ± 1.54	0.45 ± 0.45	0.40 ± 0.40	0.30 ± 0.11	8.98 ± 1.62	8		
	High ΔM : ≥ 4 jets, $M_{T2}^W > 200 \text{GeV}$							
250 - 350	3.29 ± 0.91	0.92 ± 0.46	0.78 ± 0.78	0.76 ± 0.19	5.75 ± 1.29	13		
350 - 450	0.94 ± 0.27	0.54 ± 0.34	0.18 ± 0.18	0.46 ± 0.14	2.13 ± 0.48	4		
> 450	0.57 ± 0.21	0.55 ± 0.36	0.07 ± 0.07	0.52 ± 0.17	1.71 ± 0.45	0		

dilepton same-sign Results (1/3)

dilepton same-sign Results (2/3)

dilepton same-sign Results (3/3)

OS dilepton Signal Region Definitions

ATLAS-like on-Z region

Edge region

- 2 OSSF leptons, p_T > 20 GeV
 Note: ATLAS uses 50, 25 GeV
- M_{II}: 81-101 GeV
- at least 2 jets
- $H_T + \Sigma(p_T(leps)) > 600 \text{ GeV}$
- $d\phi(jet_{1.2},MET) > 0.4$
- MET > 225 GeV

- 2 OSSF leptons with p_T > 20 GeV
- M_{II}: 20-70 GeV
- at least 2 jets + cut on MET

FS BG Prediction Method (1/2)

- Flavor symmetric processes produce OF and SF equally
 - Include ttbar, single-top, $Z \rightarrow \tau \tau$, ttW, off-Z regions of WZ, ttZ
 - Only true at gen level, corrections needed for trigger/reco effects
 - Use OF sample to predict SF contribution
 - Calculate transfer factor, Rsfof
- Calculation done in two ways:
 - 1. directly from orthogonal ttbar sample outside of signal region
 - 2. factorizing object and trigger efficiencies
- Use weighted average for final number

FS BG Prediction Method (2/2)

- Combine results from direct measurement and factorization method to get final R_{stof} value
- 5% systematic for central and forward regions

	Central		Forward			
	Data	MC	Data	MC		
$\frac{1}{2} \left(r_{\mu/e} + r_{\mu/e}^{-1} \right)$	1.008 ± 0.013	1.008 ± 0.012	1.022 ± 0.042	1.026 ± 0.046		
R_T	1.003 ± 0.072	$1.027 \!\pm 0.067$	$1.061 \!\pm 0.090$	1.029 ± 0.071		
	$R_{SF/OF}$					
from factorization	1.011 ± 0.074	1.035 ± 0.068	1.084 ± 0.103	1.057 ± 0.087		
direct measurement	1.055 ± 0.061	1.050 ± 0.013	1.107 ± 0.134	1.079 ± 0.021		
weighted average	$\textbf{1.037} \pm \textbf{0.047}$	$\textbf{1.049} \pm \textbf{0.013}$	$\textbf{1.097} \pm \textbf{0.068}$	$\textbf{1.079} \pm \textbf{0.020}$		