Searches for SUSY at CMS in Leptonic Final States with 13 TeV Data ## C. Vince Welke University of California – San Diego On behalf of the CMS experiment # Examples of SUSY Models with leptons direct stop pair-production Final state with many tops: high probability to decay to a lepton Many final states in SUSY with leptons! Final state with many leptons Produces kinematic edge in M_{II} # Search Strategy - Analyses target range of topologies with varying: - Visible energy (H_T, M_J) - Invisible energy (MET, M_T , M_{T2} , dφ(lep, W), L_T) - Jet multiplicity (N_{jets}) - Flavor content (N_{b-tags}) # CMS Analyses with 1 lepton ### Direct stop search in 1L final state Signal regions optimized for different mass splittings and decay modes Suppress 1L and 2L bkgs by tight cuts on M_T and MT2W, respectively, and search in tails of the MET distribution ## Search using sum of large-R jet masses Cluster lepton & small-R jets into large-R jets and sum the masses Sensitive to models where many tops are produced #### **Inclusive search** SM backgrounds largely reduced by cuts on L_T (Σp_T (lep)+MET), and $d\phi$ (lep, W) Signal region with no b-tags shown # Results of 1-Lepton Analyses #### **Direct stop search in 1L final state** #### **Inclusive search** #### Search using sum of large-R jet masses At 8 TeV excluded models with M_{gluino} up to 1350 GeV $\tilde{\chi}_1^0$ 200 CMS Preliminary 2.3 fb⁻¹ (13 TeV) $pp \rightarrow \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow q \overline{q}' W^{\pm} \widetilde{\chi}^{0}_{+} NLO+NLL exclusion$ 1200 1000 1600 m_ã [GeV] # CMS Analyses with Multiple Leptons #### **Same-sign Dileptons** Analysis designed to cover broad range of models and different mass splittings Signal regions split by two leading leptons' p_T , e.g. low-low (LL), high-low (HL) and high-high(HH) Signal regions start at MET > 50 GeV > Search in multiple bins across entire H_T range ### **Multi-lepton** Search in events with \geq 3 leptons & \geq 2 jets bin in N_{b-tags}, H_T, MET categorize events as on-Z if at least one opposite sign dilepton pair has M_{II} consistent with M_{Z} (off-Z if otherwise) # Results of multi-lepton Analyses At 8 TeV excluded models with M_{gluino} up to 950 GeV ## **Same-sign Dileptons** Sensitivity increases as # of high p_T leptons in final state increases At 8 TeV excluded models with M_{gluino} up to 1050 GeV ## Multi-lepton (≥ 3) Limits approaching 8 TeV sensitivity # Exploring 8 TeV Excesses at 13 TeV: OS dilepton analysis # **Physics Motivation** ## on-Z Signature Search for new physics in Z(II) + jets + MET final state ## **Edge-like Signature** Look for edge shape excess in the di-lepton invariant mass # Search Strategy ## on-Z Signature - Require OS dilepton pair with |M_{II} - M_Z| < 10 GeV, ≥ 2 jets and large MET and H_T - Additional cut on dφ(jets,MET) applied to reduce backgrounds where MET is largely due to mismeasurement of jets ## **Edge-like Signature** Require OS dilepton pair with M_{||} > 20 GeV, ≥ 2 jets and large MET # CMS results at 8 TeV in OS dileptons CMS on-Z results (M_{II} 81-101 GeV) no excess seen CMS edge results: (M_{II}: 20-70 GeV) 2.6 σ excess seen # Excesses seen at 8 TeV in OS dileptons CMS on-Z results (M_{II} 81-101 GeV) no excess seen CMS edge results: (M_{II}: 20-70 GeV) 2.6 σ excess seen ATLAS on-Z results at 8 TeV: 3.0 σ excess seen ATLAS edge results at 8 TeV: no excess seen # Backgrounds - DY Background w/ no real MET - Z+jets, WZ \rightarrow 2l2Q, ZZ \rightarrow 2L2Q ... - Predicted with γ+jets data - MET Template method - scale on-Z prediction for edge M_{II} regions # Backgrounds Events/25 GeV - DY Background w/ no real MET - Z+jets, WZ \rightarrow 2l2Q, ZZ \rightarrow 2L2Q ... - Predicted with γ+jets data - MET Template method - scale on-Z prediction for edge M_{II} regions - Flavor Symmetric Background - Background where final state lepton flavors are not correlated - ttbar, single top, WW, DY $\rightarrow \tau \tau$ - Predict ee+µµ with eµ data # Backgrounds - DY Background w/ no real MET - Z+jets, WZ→2l2Q, ZZ→2L2Q ... - Predicted with γ+jets data - MET Template method - scale on-Z prediction for edge M_{II} regions - Flavor Symmetric Background - Background where final state lepton flavors are not correlated - ttbar, single top, WW, DY→ττ - Predict ee+μμ with eμ data - MC used for other SM processes - Including TTV, VV with real MET, and VVV, V= W,Z,H # **MET Template Method** - Use γ+jets data to model MET spectrum in Z+jets - Z+jets and γ+jets events contain no "real" MET - leptons and γs are well-measured compared to jets - "fake" MET comes from jet mismeasurement # **MET Template Method** - Use γ+jets data to model MET spectrum in Z+jets - Reweight y p_T spectrum to expected Z p_T in data - pT shape different due to mass of Z # MET Template Method - Use γ+jets data to model MET spectrum in Z+jets - Reweight γ p_T spectrum to expected Z p_T in data - Prediction normalized in Z+jets dominated region, i.e. MET < 50 GeV - Systematic uncertainties derived using MC - Derive templates with γ+jets MC to predict MET in Z+jets MC # **OS Dilepton Results** - No excess seen in 13 TeV - Largest background from FS | | ATLAS-like SR | Edge SR | | | |-----------|---------------|--------------|--|--| | Predicted | 12.0+4.0 | 470.9 ± 29.9 | | | | Observed | 12 | 437 | | | ## Conclusion - Wide variety of SUSY searches performed in leptonic final states with CMS in 2015 - re-analyzed OS dilepton regions where excesses were seen in run l - No significant excesses seen at 13 TeV - Looking forward to more data in 2016! # Backup ## M_{II} Distribution in ATLAS-like Signal Region - Background predictions from MC - M_{II} shown after all other ATLAS-like cuts applied # 1 lepton Stop Results E_T^{miss} [GeV] | E _T ^{miss} [GeV] | Lost Lepton | 1ℓ (not from top) | $t\bar{t}\to~1\ell$ | $Z o u \overline{ u}$ | Total
background | Data | | | |--------------------------------------|--|------------------------|---------------------|-------------------------|---------------------|------|--|--| | | Compressed $\widetilde{\chi}_1^{\pm} - \widetilde{\chi}_1^0$: 2 jets, $t_{\rm mod} > 6.4$ | | | | | | | | | 250 - 350 | 4.36 ± 1.44 | 2.61 ± 0.99 | 0.09 ± 0.09 | 0.60 ± 0.12 | 7.67 ± 1.73 | 8 | | | | > 350 | 0.62 ± 0.23 | 0.98 ± 0.47 | 0.00 ± 0.03 | 0.36 ± 0.13 | 1.96 ± 0.54 | 5 | | | | | Boosted High ΔM : 3 jets, $M_{T2}^{W} > 200 \text{GeV}$ | | | | | | | | | 250 - 350 | 2.83 ± 0.73 | 0.92 ± 0.52 | 0.12 ± 0.12 | 0.64 ± 0.13 | 4.51 ± 0.91 | 8 | | | | > 350 | 0.74 ± 0.21 | 0.88 ± 0.50 | 0.05 ± 0.05 | 0.41 ± 0.09 | 2.08 ± 0.55 | 2 | | | | | Low ΔM : ≥ 4 jets, $M_{T2}^{W} \leq 200 \text{GeV}$ | | | | | | | | | 250 - 325 | 22.97 ± 3.21 | 0.61 ± 0.61 | 0.88 ± 0.88 | 0.74 ± 0.17 | 25.20 ± 3.38 | 14 | | | | > 325 | 7.85 ± 1.54 | 0.45 ± 0.45 | 0.40 ± 0.40 | 0.30 ± 0.11 | 8.98 ± 1.62 | 8 | | | | | High ΔM : ≥ 4 jets, $M_{T2}^W > 200 \text{GeV}$ | | | | | | | | | 250 - 350 | 3.29 ± 0.91 | 0.92 ± 0.46 | 0.78 ± 0.78 | 0.76 ± 0.19 | 5.75 ± 1.29 | 13 | | | | 350 - 450 | 0.94 ± 0.27 | 0.54 ± 0.34 | 0.18 ± 0.18 | 0.46 ± 0.14 | 2.13 ± 0.48 | 4 | | | | > 450 | 0.57 ± 0.21 | 0.55 ± 0.36 | 0.07 ± 0.07 | 0.52 ± 0.17 | 1.71 ± 0.45 | 0 | | | # dilepton same-sign Results (1/3) # dilepton same-sign Results (2/3) # dilepton same-sign Results (3/3) # OS dilepton Signal Region Definitions ## **ATLAS-like on-Z region** ## **Edge region** - 2 OSSF leptons, p_T > 20 GeV Note: ATLAS uses 50, 25 GeV - M_{II}: 81-101 GeV - at least 2 jets - $H_T + \Sigma(p_T(leps)) > 600 \text{ GeV}$ - $d\phi(jet_{1.2},MET) > 0.4$ - MET > 225 GeV - 2 OSSF leptons with p_T > 20 GeV - M_{II}: 20-70 GeV - at least 2 jets + cut on MET # FS BG Prediction Method (1/2) - Flavor symmetric processes produce OF and SF equally - Include ttbar, single-top, $Z \rightarrow \tau \tau$, ttW, off-Z regions of WZ, ttZ - Only true at gen level, corrections needed for trigger/reco effects - Use OF sample to predict SF contribution - Calculate transfer factor, Rsfof - Calculation done in two ways: - 1. directly from orthogonal ttbar sample outside of signal region - 2. factorizing object and trigger efficiencies - Use weighted average for final number # FS BG Prediction Method (2/2) - Combine results from direct measurement and factorization method to get final R_{stof} value - 5% systematic for central and forward regions | | Central | | Forward | | | | |---|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|--| | | Data | MC | Data | MC | | | | $\frac{1}{2} \left(r_{\mu/e} + r_{\mu/e}^{-1} \right)$ | 1.008 ± 0.013 | 1.008 ± 0.012 | 1.022 ± 0.042 | 1.026 ± 0.046 | | | | R_T | 1.003 ± 0.072 | $1.027 \!\pm 0.067$ | $1.061 \!\pm 0.090$ | 1.029 ± 0.071 | | | | | $R_{SF/OF}$ | | | | | | | from factorization | 1.011 ± 0.074 | 1.035 ± 0.068 | 1.084 ± 0.103 | 1.057 ± 0.087 | | | | direct measurement | 1.055 ± 0.061 | 1.050 ± 0.013 | 1.107 ± 0.134 | 1.079 ± 0.021 | | | | weighted average | $\textbf{1.037} \pm \textbf{0.047}$ | $\textbf{1.049} \pm \textbf{0.013}$ | $\textbf{1.097} \pm \textbf{0.068}$ | $\textbf{1.079} \pm \textbf{0.020}$ | | |