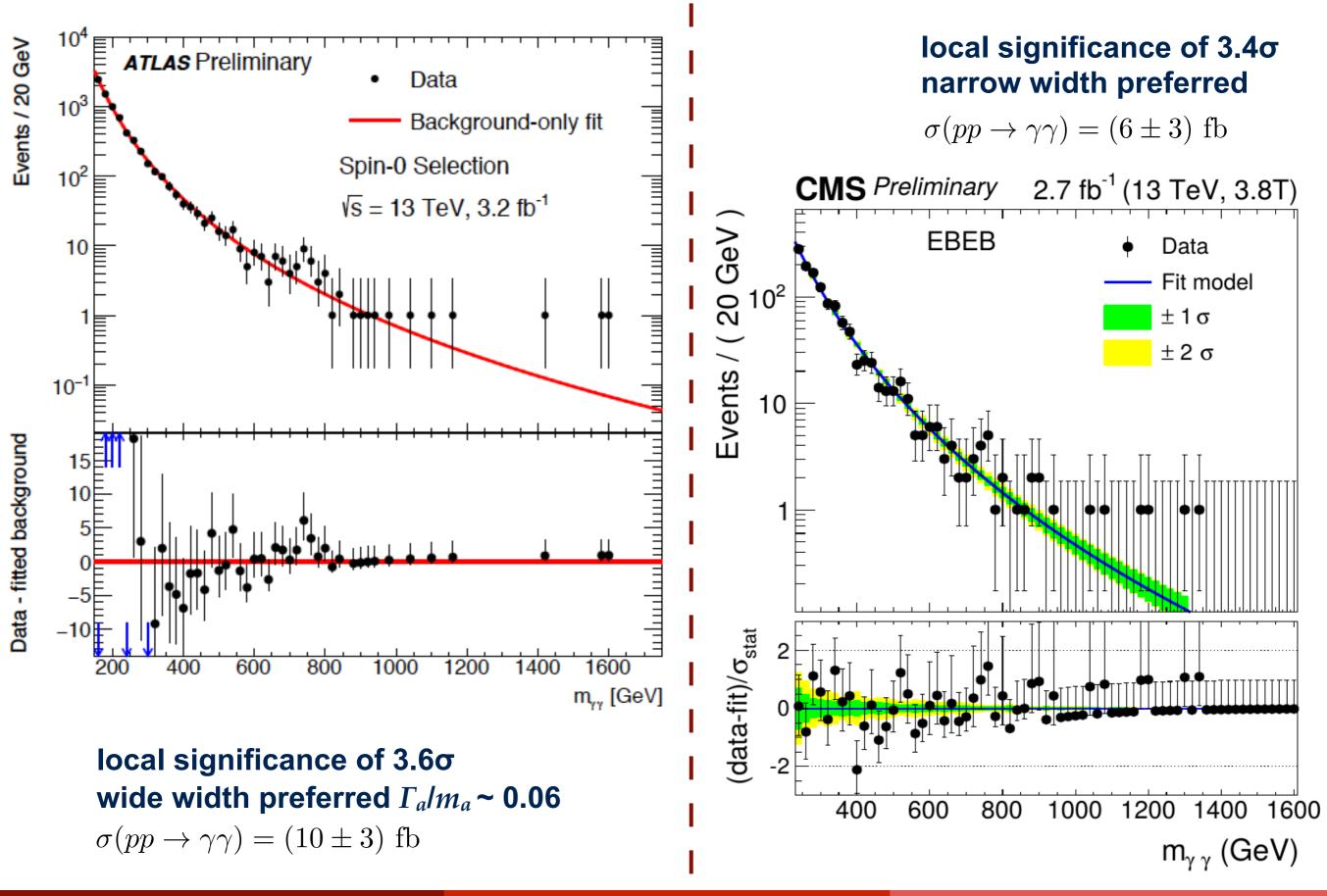
Minimal Composite Dynamics versus Axion Origin of the Diphoton Excess

Emiliano Molinaro

arXiv:1512.05334; 1602.07574

in collaboration with Francesco Sannino and Natascia Vignaroli



A first discussion of 13 TeV results April 10-15, 2016, Obergurgl University Center, Tirol, Austria

Diphoton invariant mass searches

Effective Lagrangian for J^p = 0⁻

New elementary axion-like or composite η' -like state with a mass of 750 GeV

$$\mathcal{L}_{\text{eff}} = -\frac{c_{GG}}{8f_a} a \operatorname{Tr} \left[G^{\mu\nu} \tilde{G}_{\mu\nu} \right] - \frac{c_{AA}}{8f_a} a A^{\mu\nu} \tilde{A}_{\mu\nu} - \frac{c_{AZ}}{4f_a} a A^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{c_{WW}}{4f_a} a W^{+\mu\nu} \tilde{W}^{-}_{\mu\nu} - \frac{c_{ZZ}}{8f_a} a Z^{\mu\nu} \tilde{Z}_{\mu\nu}$$

with $\tilde{V}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma}$

Effective coupling to a vector-like quark *T* with $m_T > m_a/2$:

$$i\overline{T}\gamma_{\mu}D^{\mu}T - m_{T}\overline{T}T + \Delta_{t-T}^{\min} - i\mathbf{y_{T}}\frac{m_{T}}{f_{a}}a\,\overline{T}\gamma_{5}T$$

which induces/affects c_{GG} and c_{AA} .

It is possible to derive distinctive signatures aimed at disentangling the **composite** nature from the **elementary** one.

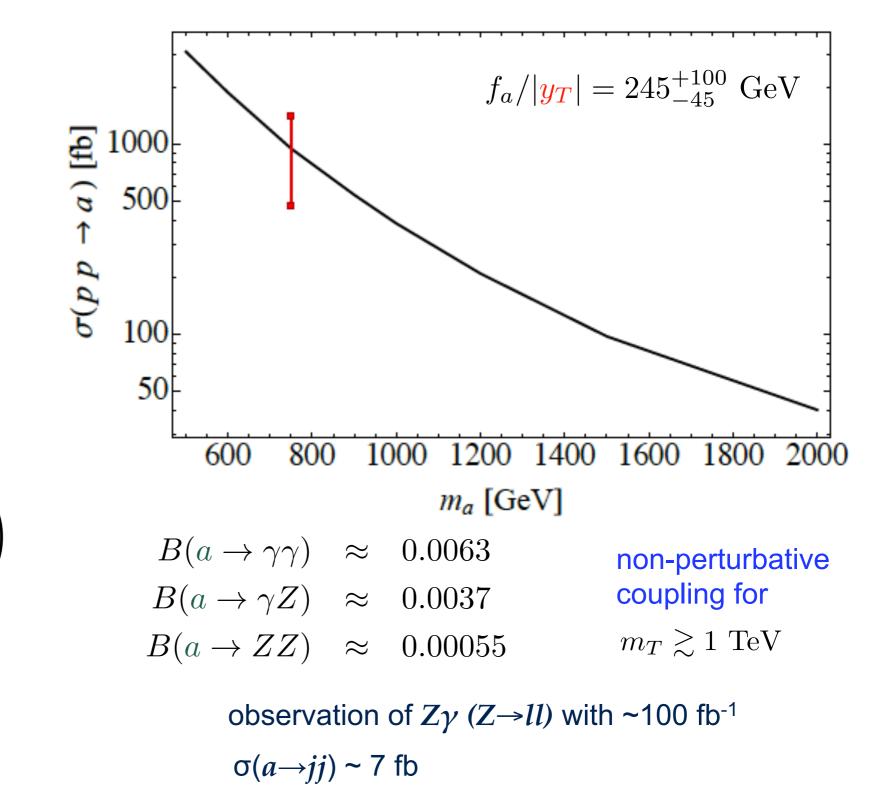
If c_{GG} and c_{AA} are generated only by triangle diagrams with the SM top, it is not possible to explain the diphoton resonance

Emiliano Molinaro (CP³-Origins)

Elementary axion-like scenario

a

Production via gluon fusion mediated by a new vector-like quark T


From *T*-loop contribution:

g

$$c_{GG}^{T} = y_{T} \frac{\alpha_{S}}{2\pi} F\left(\frac{m_{a}^{2}}{4m_{T}^{2}}\right)$$
$$c_{AA}^{T} = y_{T} \frac{4}{3} \frac{\alpha_{em}}{\pi} F\left(\frac{m_{a}^{2}}{4m_{T}^{2}}\right)$$

SU(2)_L invariance implies:

$$c_{AZ}^{T} = \tan(\theta_{W}) c_{AA}^{T}$$
$$c_{ZZ}^{T} = \tan^{2}(\theta_{W}) c_{AA}^{T}$$

Emiliano Molinaro (CP³-Origins)

Minimal composite model at the EW scale

New strongly coupled sector engaging a $SU(N_T)$ gauge interaction

The theory dynamically explains the breaking of the electroweak symmetry

Minimal model with N_F = 2 techniquarks (SM colour singlets)

$$Q_L \equiv (U_L, D_L) \qquad \qquad U_R, \ D_R$$

New leptons cancel gauge anomalies (needed for non-zero Q_L hypercharge)

$$L_L \equiv (N_L, E_L) \qquad \qquad N_R, E_R$$

Hypercharge assignments:

$$Y(Q_L) = \frac{y}{2}, \qquad Y(U_R/D_R) = \frac{y \pm 1}{2}$$
$$Y(L_L) = -d(R)\frac{y}{2} \qquad Y(N_R/E_R)\frac{-d(R)y \pm 1}{2}$$

y: real parameter

d(R): dimension of the representation R of the techniquarks under SU(N_T)

The new strong gauge sector generates chiral and EW symmetry breaking with confining scale Λ_T and technipion decay constant F_T

$$\begin{aligned} \mathcal{U} &= e^{i\Phi/F_T} = \exp\left[\frac{i}{F_T}\left(a + \tau \cdot \mathbf{\Pi}\right)\right] \\ \text{Under a chiral transformation:} \\ \mathcal{U} \to u_L \mathcal{U} u_R^{\dagger} \\ \text{Pseudoscalar state associated with} \\ \text{U(1)}_{\text{A}} \text{ anomaly, analogous to the QCD } \eta' \end{aligned}$$

EW interactions are a subgroup of $SU(2)_L \times SU(2)_R \times U(1)_V$

 $\langle 0|\overline{U}U + \overline{D}D|0 \rangle \neq 0$

$$m_W^2 = \frac{1}{2} g_W F_T^2$$
 $m_Z^2 = \frac{1}{2} \sqrt{g_W^2 + g_Y^2} F_T^2$
 $F_T = 246 \text{ GeV}$

Below the composite scale Λ_T the low energy physics is described by an effective Lagrangian satisfying all the symmetries of the underlying theory

$$\mathcal{L}_{\text{eff}} = \frac{1}{4} F_T^2 \operatorname{Tr} \left[\left(\mathcal{D}^{\mu} \mathcal{U} \right)^{\dagger} \mathcal{D}_{\mu} \mathcal{U} \right] + \mathcal{L}_{m_a} + \mathcal{L}_{\text{WZW}} + \dots$$

Below the composite scale Λ_T the low energy physics is described by an effective Lagrangian satisfying all the symmetries of the underlying theory

$$\mathcal{L}_{\text{eff}} = \frac{1}{4} F_T^2 \operatorname{Tr} \left[(\mathcal{D}^{\mu} \mathcal{U})^{\dagger} \mathcal{D}_{\mu} \mathcal{U} \right] + \mathcal{L}_{m_a} + \mathcal{L}_{\text{WZW}} + \dots$$
$$\mathcal{L}_{m_a} = \frac{1}{32} m_a^2 F_T^2 \operatorname{Tr} \left[\ln \mathcal{U} - \ln \mathcal{U}^{\dagger} \right]^2$$

For massless techniquarks in the fundamental representation, $d(R)=N_T$, we have in the large N_T limit the Witten-Veneziano relation:

$$m_a = \sqrt{\frac{2}{3} \frac{F_T}{f_\pi}} \frac{3}{N_T} m_{\eta_0} \approx \frac{6}{N_T} \text{ TeV}$$

$$m_{\eta_0}^2 = m_{\eta'}^2 + m_{\eta}^2 - 2 m_K^2 \approx 850 \text{ GeV}$$

a natural candidate for the 750 GeV state

Emiliano Molinaro (CP³-Origins)

Below the composite scale Λ_T the low energy physics is described by an effective Lagrangian satisfying all the symmetries of the underlying theory

$$\mathcal{L}_{\text{eff}} = \frac{1}{4} F_T^2 \operatorname{Tr} \left[\left(\mathcal{D}^{\mu} \mathcal{U} \right)^{\dagger} \mathcal{D}_{\mu} \mathcal{U} \right] + \mathcal{L}_{m_a} + \mathcal{L}_{\text{WZW}} + \dots$$

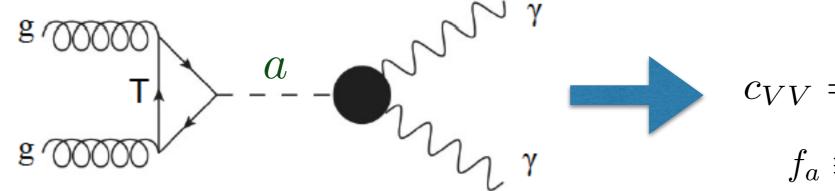
Gauged Wess-Zumino-Witten topological term associated with global axial-vector currents anomalies:

$$\mathcal{L}_{\text{WZW}} = -\frac{d(R)}{48\pi^2 F_T} \epsilon_{\mu\nu\rho\sigma} \text{Tr} \Big[\Phi \Big(\partial^{\mu} A_L^{\nu} \partial^{\rho} A_L^{\sigma} + \partial^{\mu} A_R^{\nu} \partial^{\rho} A_R^{\sigma} + \partial^{\mu} \left(A_L^{\nu} + A_R^{\nu} \right) \partial^{\rho} \left(A_L^{\sigma} + A_R^{\sigma} \right) \Big] \\ - \frac{i \, d(R)}{48\pi^2 F_T^3} \epsilon_{\mu\nu\rho\sigma} \text{Tr} \Big[\partial^{\mu} \Phi \partial^{\nu} \Phi \partial^{\rho} \Phi \left(A_L^{\sigma} + A_R^{\sigma} \right) \Big] + \dots$$

$$\Phi = a + \tau \cdot \mathbf{\Pi} \qquad A_L^{\mu} = g_Y \left(Q - \frac{1}{2} \tau_3 \right) B^{\mu} + \frac{1}{2} g_W \boldsymbol{\tau} \cdot \boldsymbol{W}^{\mu}, \qquad A_R^{\mu} = g_Y Q B^{\mu}$$

three-body decays $a \rightarrow 3\Pi$ (relevant only for $m_a \gtrsim 2 \text{ TeV}$)

topological sector predicts *a* decay rates:


$$a \to \gamma \gamma, \, \gamma Z, \, ZZ, \, W^+W^-$$

Emiliano Molinaro (CP³-Origins)

LHC SKI 2016

Obergurgl, Tirol, 11-04-16 7

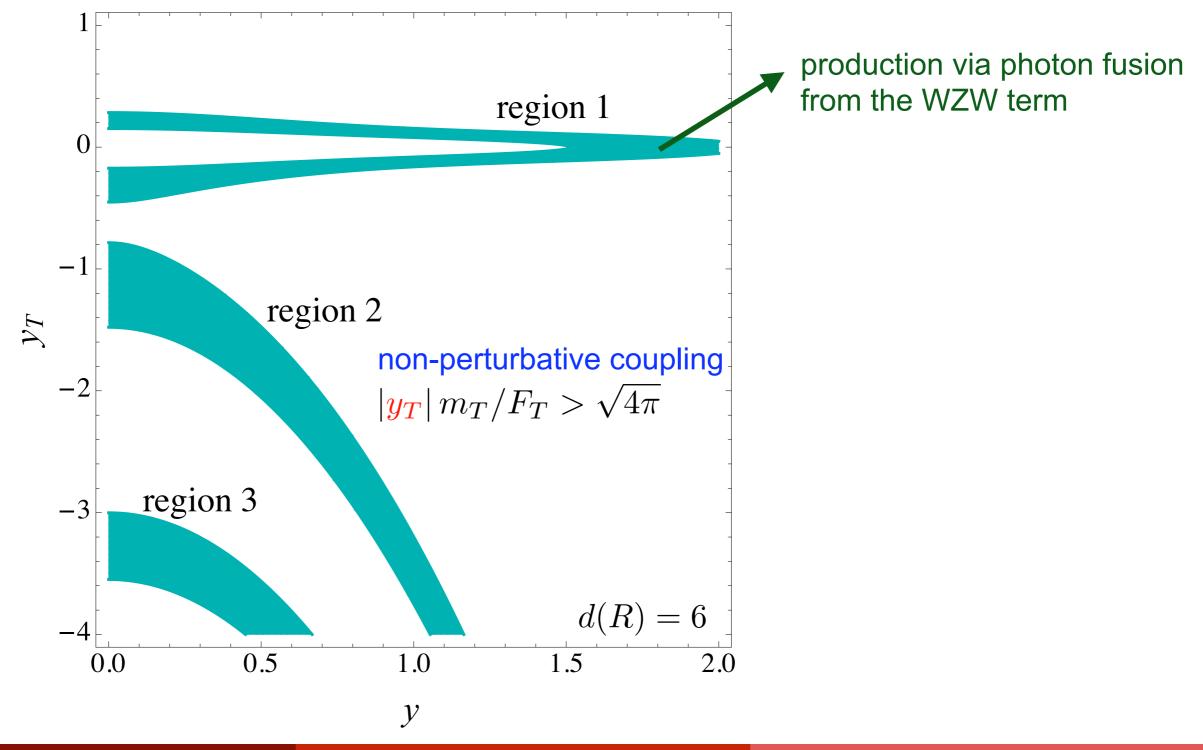
Production via gluon fusion mediated by a new vector-like quark T

$$c_{VV} = c_{VV}^T + c_{VV}^{\text{comp}}$$
$$f_a \equiv F_T = 246 \text{ GeV}$$

From *T*-loop contribution:

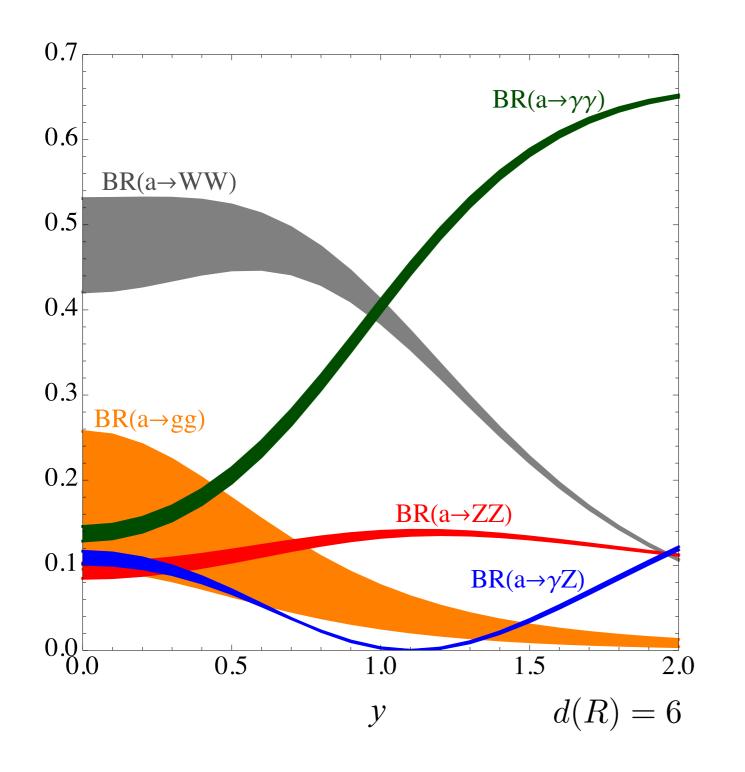
$$c_{GG}^{T} = y_{T} \frac{\alpha_{S}}{2\pi} F\left(\frac{m_{a}^{2}}{4m_{T}^{2}}\right)$$
$$c_{AA}^{T} = y_{T} \frac{4}{3} \frac{\alpha_{em}}{\pi} F\left(\frac{m_{a}^{2}}{4m_{T}^{2}}\right)$$

SU(2)_L invariance implies:


$$c_{AZ}^{T} = \tan(\theta_{W}) c_{AA}^{T} \qquad c_{WW}^{T} = 0$$
$$c_{ZZ}^{T} = \tan^{2}(\theta_{W}) c_{AA}^{T}$$

From gauged WZW term:

$$\begin{split} c_{AA}^{\text{comp}} &= \left(1+y^2\right) \frac{e^2 d(R)}{8 \, \pi^2} \\ c_{AZ}^{\text{comp}} &= \frac{1-2(1+y^2) s_W^2}{2 \, c_W \, s_W} \frac{e^2 d(R)}{8 \, \pi^2} \\ c_{ZZ}^{\text{comp}} &= \frac{1-3 s_W^2 + 3(1+y^2) s_W^4}{3 \, c_W^2 \, s_W^2} \frac{e^2 d(R)}{8 \, \pi^2} \\ c_{WW}^{\text{comp}} &= \frac{e^2}{s_W^2} \frac{d(R)}{24 \, \pi^2} \\ \text{Di Vecchia, Veneziano, 1980} \end{split}$$


Emiliano Molinaro (CP³-Origins)

Parameter space reproducing the diphoton excess within 1σ

Emiliano Molinaro (CP³-Origins)

Predictions for the branching ratios for region 1 and $y_T \ge 0$

WW

enhanced compared to $\gamma\gamma$ for y<1 (absent in the axion-like case)

 $Z\gamma$, ZZcomparable with $\gamma\gamma$ for small y, suppressed for y>1

88 always subdominant

The composite diphoton resonance passes all the LHC constraints

	LHC-13	η' -like state
WW	σ < 250 fb [ATLAS-CONF-2015-075]	σ < 20 fb
Zγ	σ < 30 fb [ATLAS-CONF-2016-010]	σ < 4 fb
ZZ	σ < 250 fb [ATLAS-CONF-2015-071]	σ < 4 fb
	LHC-8	
WW	σ < 40 fb [ATLAS arXiv:1509.00389]	σ < 4 fb
$Z\gamma$	σ < 4 fb [ATLAS arXiv:1407.8150]	σ < 1 fb
ZZ	σ < 10 fb [ATLAS arXiv:1507.05930]	σ < 1 fb

Top-mediated gluon fusion

$$\mathcal{L}_{\text{eff}} \supset -iy_t \frac{m_t}{f_a} a \bar{t} \gamma_5 t + \dots$$

$$25 \text{ for-mediated Gluon Fusion} t \bar{t} \text{ 8 TeV} \text{ CMS 13 TeV} \text{ CMS$$

$$\sigma(pp \to a \to \gamma\gamma) \simeq c_{AA}^2 \frac{\alpha_S^2 |F(m_a^2/4m_t^2)|^2}{6144 \, \pi} \frac{m_a^4}{m_t^2 v^2} \frac{d\mathcal{L}^{gg}}{dm_a^2}$$

Emiliano Molinaro (CP³-Origins)

Top-mediated gluon fusion and WZW decay

Assume a direct coupling of *a* to SM fermions generated by the same EGD responsible for fermion masses:

SM third generation: $Q_3 \equiv (t, b)^T$

 $\mathcal{L}_{\text{ferm}} = i \,\overline{Q}_{3L} \gamma_{\mu} \left(\partial^{\mu} - iA_{L}^{\mu}\right) Q_{3L} + i \,\overline{Q}_{3R} \gamma_{\mu} \left(\partial^{\mu} - iA_{R}^{\mu}\right) Q_{3R}$ $- Y_{1} \,F_{T} \,f_{1}(h) \left(\overline{Q}_{3L} \mathcal{U} Q_{3R} + \overline{Q}_{3R} \mathcal{U}^{\dagger} Q_{3L}\right) - Y_{2} \,F_{T} \,f_{2}(h) \left(\overline{Q}_{3L} \mathcal{U} \tau_{3} \,Q_{3R} + \overline{Q}_{3R} \tau_{3} \,\mathcal{U}^{\dagger} Q_{3L}\right) + \dots$

Higgs effective couplings: $f_{1,2}(h) = 1 + c_{1,2} \frac{h}{F_T} + \dots$

top and bottom masses:

$$m_t = (Y_1 + Y_2) F_T$$
 $m_b = (Y_1 - Y_2) F_T$

effective couplings of *a*: $\mathcal{L}_{\text{ferm}} \supset -\frac{m_t}{F_T} i \, a \, \overline{t} \, \gamma_5 \, t - \frac{m_b}{F_T} i \, a \, \overline{b} \, \gamma_5 \, b$ $y_t = 1$

If SM top mass is generated via four-fermion operators, the coupling of *a* to the top naturally gives a wide width resonance: $\Gamma_a/m_a \sim 0.06$

The ATLAS diphoton excess is explained for $y \gtrsim 3$

Summary

- ATLAS and CMS find local excesses respectively of 3.6 σ and 3.4 σ for a spin-0 diphoton resonance with invariant mass around 750 GeV
- The new resonance can be explained by a new elementary axion-like or a composite η' -like state
- Searching for new decay channels will allow to discriminate between the two realisations
- A composite η' -like state coupled to the SM top naturally explains the ATLAS wide-width resonance fit
- Diphoton searches will be instrumental for testing minimal composite models of dynamical electroweak symmetry breaking