

Studies of Higgs bosons decaying to fermions with CMS

Daniel Salerno on behalf of the CMS Collaboration

LHC SKI 2016

11 April 2016, Obergurgl University Center, Tirol, Austria

Outline

- 1 Introduction
- 2 Standard model searches
 - ► H→bb
 - VH
 - VBF
 - ▶ ttH, H→bb
 - ttH, multileptons
 - ttH combination
 - Η→ττ
 - ► H→µµ/ee

- 3 Standard Model ATLAS+CMS combination
- 4 Di-Higgs production
 - ► X→HH overview
 - ► Run I X→HH comparison
 - ► X→H(bb)H(bb)
 - ► X→H(bb)H(WW)
 - ► X→H(bb)H(ττ)
 - Non resonant H(bb)H(ττ)
- 5 Summary

SM Higgs boson production

Introduction

- Higgs boson with 125 GeV mass discovered by CMS and ATLAS
- Number of different production mechanisms

Production cross section at LHC

Higgs boson decay

Comments

- Fermionic decay channels offer good prospects
 - Large branching ratios for H → bb, ττ, cc
 - Analyses less sensitive due to large backgrounds (too large for cc)
- Observation of fermionic decays would be a test of the Yukawa couplings
- Provide insight into possible new physics

Decay branching ratios

Standard model searches

H→bb: Reconstructing m_{bb}

Regression method (VH & VBF)

- Applied to b-tagged jets
- Aims to improve the standard CMS jet calibration to extract the true b-quark energy
- Uses a multivariate BDT
 - Several input variables related to the jet structure and nearby leptons
 - Targeting semi-leptonic b decays
 - Output is the corrected jet p_T
- Improves the di-jet invariant mass resolution by ~ 15%
 - Improves VH analysis sensitivity by 10-20%

H→bb

ttH, H→bb

+ jets

lepton

lata/MC

-0.8 -0.6 -0.4 -0.2 0 0.2

Η

W

Analysis overview

13 TeV

- Small cross section, but direct probe of the Higgs/top Yukawa coupling y_t
- 2 channels & 13 event categories
- BDT and Matrix Element discriminants used

Run I results at 8 TeV: Obs. (Exp.) limit

BDT: 5.2 (4.1) CMS-PAS-HIG-13-019

Matrix Element: 4.2 (3.3) EPJC 75 (2015) 251

00000

0.4 0.6

BDT (incl. MEM) discriminant

ata/MC

01 02 03 04 05

0

0.6 0.7 0.8 0.9

MEM discriminant

dilepton

ttH, multileptons

13 TeV <

LHC SKI 2016 – Daniel Salerno

H \rightarrow ττ: Reconstructing m_{ττ}

Likelihood method

- Tau decay produces invisible v_{τ}
 - Leptonic decay produces further v
 - m_{ττ} is left unconstrained
- If no other source of neutrino, construct a likelihood f(z,y,x)
 - ► E_T^{miss}: **z**
 - Visible decay kinematics: y
 - True tau-tau kinematics: x

 $P(m_{\tau\tau}^*) = \int \delta(m_{\tau\tau}^* - m_{\tau\tau}(\mathbf{x})) f(\mathbf{z}, \mathbf{y}, \mathbf{x}) d\mathbf{x}$

• Take $m_{\tau\tau}$ that maximises $P(m_{\tau\tau}^*)$

If another source of v (i.e. WH production), take visible $m_{\tau\tau}^{vis}$

Η→ττ

H→µµ/ee

- Small branching ratio
 - Cleanest of fermionic decays
 - Test of Yukawa coupling to second/first generation fermions
- Search for peak in m_{ll} spectrum
 - Over smoothly falling background

ATLAS+CMS combination

Run I: ~ 5 fb⁻¹ @ 7 TeV, ~ 20 fb⁻¹ @ 8 TeV

Coupling modifiers Vector – fermion CM contours $K_7 = K_W = K_V$ $K_t = K_r = K_h = K_F$ ATLAS and CMS Preliminary - ATLAS LHC Run 1 - CMS <u>"</u>ш. 2.5_[..., ..., ..., ATLAS+CMS ATLAS and CMS → γγ — ± 1σ LHC Run 1 $\rightarrow ZZ$ κ₇ $K_z^2 = \Gamma_{H \to ZZ} / \Gamma_{SM}$ Measurements Preliminary $H \rightarrow WW$ 2 include all $H \rightarrow bb$ relevant $H \rightarrow \tau \tau$ processes κ_w $K_w^2 = \Gamma_{H \to WW} / \Gamma_{SM}$ Combined 1.5 $K_t^2 = \sigma_{ttH} / \sigma_{SM}$ κ_t $K_{\tau}^{2} = \Gamma_{H \to \tau\tau} / \Gamma_{SM}$ κ_{τ} 0.5 $K_b^2 = \Gamma_{H \rightarrow bb} / \Gamma_{SM}$ κ_b * SM - 68% CL $K_u^2 = \Gamma_{H \to \mu\mu} / \Gamma_{SM}$ + Best fit95% CL κ_u 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Parameter value κ_{V}^{\dagger}

Data consistent with Standard Model predictions for all parameterisations

LHC SKI 2016 – Daniel Salerno

Di-Higgs production

X→HH overview

Motivation

- Several BSM models predict narrow-width HH resonances
 - Heavy Higgs
 - Spin-0 radion
 - KK-graviton in extra dimensions
- Production cross section unknown
- Higher LHC energy opens up a new range of search possibilities

Search strategy

- The aim is to reconstruct the resonant particle mass
 - First reconstruct 2 SM Higgs
 - Analyses employ different techniques for m_H reconstruction
- SM t-tbar production is a major background
 - Analyses use different techniques for background rejection

Run I X→HH comparison

LHC SKI 2016 – Daniel Salerno

LHC SKI 2016 - Daniel Salerno

¹³ TeV Non resonant H(bb)H($\tau\tau$)

LHC SKI 2016 - Daniel Salerno

Summary

	Strong Run I results for CMS and ATLAS:		
Summary	Significance (σ) ttH production H \rightarrow bb H \rightarrow $\tau\tau$	CMS Obs. (Exp.) 3.6 (1.3) 2.0 (2.5) 3.2 (3.7)	ATLAS+CMS Obs. (Exp.) 4.4 (2.0) 2.6 (3.7) 5.5 (5.0)
	 H→µµ/ee low sensitivity – still needs more data Di-Higgs: BSM exclusions, on the way to SM HH sensitivity 		
What's next?	 More data in 2016 Expect ~ 30 fb⁻¹ by year end All analyses will reach higher sensitivities than Run I First results for VH/VBF, H→bb, H→ττ, & H→μµ/ee in Run II Updated ttH, H→bb results – including fully hadronic channel Observations of new physics? 		

Backup

VH, H→bb

- Channels include: W(μν)H, W(eν)H, W(τν)H, Z(μμ)H, Z(ee)H, Z(νν)H
- Major backgrounds: V+jets, tt, single-top, VV
- Associated vector boson tagged using leptonic decay
- H→bb reconstructed from pair of b-tagged jets with highest p_T(jj)
 - B-jet energy regression to improve m_{jj} resolution
- Boosted p_T of V or H required
- BDT discriminant

- pp→qqH has large cross section
- Major backgrounds: QCD multijet, V+jets, tt, single-top
- 2 forward light quarks
 - $|\Delta \eta_{qq}|$ >2.5, 3.5 (trigger dependent)
 - m_{qq} > 250, 750 GeV
- H→bb reconstructed from pair of b-tagged jets with Δφ_{bb} < 2.0
 - B-jet energy regression to improve m_{ii} resolution
- BDT discriminant for signal/QCD separation and categorisation
- Invariant mass final distribution

ttH, H→bb

- Small cross section, but provides a direct probe of the Higgs/top Yukawa coupling y_t
 - Important since $y_t \sim 1$ in SM
- Lepton+jets & dilepton channels
- Major backgrounds: tt+jets (including tt+bb), single-top, V+jets, VV, tt+V
- 1 or 2 opposite sign leptons
- At least 4 (I+jets) or 3 (DL) jets
 - Including at least 2 b-tags
 - Boosted top and Higgs in Run II
- Several event categories
 - Based on N_{jets} and N_{b-jets}
- BDT and Matrix Element discriminants used

Results – Run II

- Channels include: ttH(ZZ*), ttH(WW*), ttH(ττ)
 - Leptonic top and Z,W,τ decays
 - 1 hadronic top and Z,W,τ allowed
- Major backgrounds: ttV, VV, QCD (fake leptons)
- At least 2 (same sign) or 3 leptons
 - Z mass veto
- At least 4 or 2 jets
 - Including at least 1 b-tag
- Several events categories
 - Based on lepton flavour and b-tag
- BDT discriminant

Η→ττ

- Production: gF, VBF, VH
- 3 channels: LL', ℓ+Lτ_h, ℓℓ+LL'
 - ee, $\mu\mu$, e μ , e τ_h , $\mu\tau_h$, $\tau_h\tau_h$,
 - $\mu + \mu \tau_h$, $e + \mu \tau_h / \mu + e \tau_h e + \tau_h \tau_h$, $\mu + \tau_h \tau_h$
 - $\ell\ell$ + $\mu\tau_{h,}e\tau_{h}$, $e\mu$, $\tau_{h}\tau_{h}$
- Major backgrounds: DY Z→ττ,
 VV, W+jets, tt, QCD multijet
- Likelihood reconstruction of m_{ττ}
- Several event categories
 - \blacktriangleright Based on $N_{jets},\,N_{leps}$ and $\ell,\,\tau,\,H\,p_{T}$
- BDT or m_{ττ} or m_{vis} discriminant

ГТ

Visible di- τ mass distribution in LL' events ($\mu \tau_h$ and $e \tau_h$ channels).

H→µµ/ee

- Small branching ratio
 - Cleanest of fermionic decays
 - Test of Yukawa coupling to second/third generation fermions
- Major backgrounds: DY Z/γ→ℓℓ, tt, VV
- Search for peak in m_{ee} spectrum
 - Over smoothly falling background
- Several event categories
- Based on N_{jets} and $p_T(\mu\mu) / m_{ee}$
- Signal extracted by fitting m_{ll} with parameterized bkg+signal in all categories simultaneously

Analysis overview

- Several BSM models posit narrow-width HH resonances
 - e.g. gravitons in extra dimensions
 - Production cross section unknown
- Search in 2 mass regions:
 - 260-400, 400-1200 GeV
- Backgrounds: QCD multijet, tt
 - Data driven from side-bands
 - GaussExp fit in SB and inverted SR
- At least 4 b-tagged jets
- Reconstruct H-H pair requiring:
 - ▶ | m_{H1,2} 115 | < 34 GeV

$$\sqrt{\Delta m_{H_1}^2 + \Delta m_{H_2}^2} < \sigma_H$$
 (17, 23 GeV)

2.3 fb⁻¹ (13 TeV 2.3 fb⁻¹ (13 TeV CMS CMS Data in SR Data in SR Preliminarv Preliminary vents / 20 Low Mass Medium Mass Region Region ٦C 350 400 450 500 550 600 600 800 m_x (GeV) m_v (GeV)

Results – Run II

CMS-HIG-16-002

Events / 0.02

- Extra dimensions models predict HH resonances
 - e.g. spin-0 radion, KK-graviton
- $bb\ell v\ell v$ channel: $\mu\mu$, μe , $e\mu$, ee
- Major backgrounds: tt, DY, single-top
- 2 OS leptons with $m_{\ell\ell}$ > 12 GeV
- At least 2 b-jets
 - 2 with highest CSV selected
- Cuts on $m_{\ell\ell}$, $\Delta R_{\ell\ell}$, ΔR_{ii} , $\Delta \varphi_{\ell\ell,ii}$
 - BDT used to defined categories
- Maximum likelihood fit to all distributions

Analysis overview

- Search for heavy Higgs boson decaying into two SM Higgs
 - e.g. singlet model, MSSM
 - Unknown heavy Higgs mass
- 3 channels: $bbe\tau_h$, $bb\mu\tau_h$, $bb\tau_h\tau_h$
- Major backgrounds: tt, Z+jets, QCD multijet
- 2 OS leptons and 2 b-jets
 - No extra leptons
- Likelihood reconstruction of m_{TT}
- $80 \text{ GeV} < m_{\tau\tau}, m_{bb} < 160 \text{ GeV}$
- $m_{hbl \tau} = m_{hb} = m_{H}$ reconstructed using kinematic fit

Results – Run II

^{13 TeV Non resonant H(bb)H(ττ)}

Results – Run II

Analysis overview

- Higgs pair production very sensitive to BSM physics
 - Modelled by additional couplings
- 3 channels: $bbe\tau_h$, $bb\mu\tau_h$, $bb\tau_h\tau_h$
- Major backgrounds: tt, Z+jets, QCD multijet
- 2 OS leptons and 2 b-jets
 - No extra µ/e
- Likelihood reconstruction of m_{ττ}
- 80 GeV < m_{ττ}, m_{bb} < 160 GeV</p>
- BDT vs. tt used in $bb\ell \tau_h$ channel
- m_{bbLτ} = m_{hh} final discriminant

CMS-HIG-16-012