LHC Ski 2016, Austria

Report of Contributions

https://indico.cern.ch/e/lhcski2016
The scalar sector of the Standard Model. Moving from discovery to precision physics.

Monday, 11 April 2016 08:20 (40 minutes)

Summary

Primary author: FLECHL, Martin (Austrian Academy of Sciences (AT))
Presenter: FLECHL, Martin (Austrian Academy of Sciences (AT))
On the Nature of Dynamical Electroweak Symmetry Breaking

Monday, 11 April 2016 10:10 (40 minutes)

Summary

Primary author: SANNINO, Francesco (CP3-Origins)
Presenter: SANNINO, Francesco (CP3-Origins)
The stability of the electroweak scale

Monday, 11 April 2016 10:50 (40 minutes)

Summary

Primary author: BATELL, Brian Thomas
Presenter: BATELL, Brian Thomas
What’s hiding at 750 GeV?

Monday, 11 April 2016 09:00 (40 minutes)

Summary

Primary author: SANZ GONZALEZ, Veronica (University of Sussex)
Presenter: SANZ GONZALEZ, Veronica (University of Sussex)
Low-scale SUSY: RIP or resurrection?

Tuesday, 12 April 2016 08:20 (40 minutes)

Summary

Primary author: SEKMEN, Sezen (Kyungpook National University (KR))
Presenter: SEKMEN, Sezen (Kyungpook National University (KR))
Fine-tuning sweet spots

Tuesday, 12 April 2016 09:00 (40 minutes)

Summary

Presenter: PIERINI, Maurizio (CERN)
"Exotica"? Speaking up for minorities.

Tuesday, 12 April 2016 10:10 (40 minutes)

Summary

Primary author: HRYN'OVA, Tetiana (Centre National de la Recherche Scientifique (FR))
Presenter: HRYN'OVA, Tetiana (Centre National de la Recherche Scientifique (FR))
Summary

Primary author: F. KAMENIK, Jernej (Jožef Stefan Institute)
Presenter: F. KAMENIK, Jernej (Jožef Stefan Institute)
Precision Measurements

Thursday, 14 April 2016 10:10 (40 minutes)

Summary

Primary author: GERSHON, Timothy (University of Warwick (GB))
Presenter: GERSHON, Timothy (University of Warwick (GB))
New Physics in the flavor sector

Thursday, 14 April 2016 10:50 (40 minutes)

Summary

Primary author: CRIVELLIN, Andreas (CERN)
Presenter: CRIVELLIN, Andreas (CERN)
Physics program at Belle-II in light of LHCb

Thursday, 14 April 2016 11:30 (40 minutes)

Summary

Primary author: BERNLOCHNER, Florian Urs (Universitaet Bonn (DE))
Presenter: BERNLOCHNER, Florian Urs (Universitaet Bonn (DE))
Opening Talk: the Physics of New Physics

Sunday, 10 April 2016 20:00 (1 hour)

Summary

Primary author: DVALI, Georgi (NYU and LMU)
Presenter: DVALI, Georgi (NYU and LMU)
Going Beyond WIMPs: Exploring Light Dark Matter

Wednesday, 13 April 2016 09:00 (40 minutes)

Summary

Presenter: VOLANSKY, Tomer (Tel Aviv University (IL))
Dark Matter Direct Detection in the next 5 years

Wednesday, 13 April 2016 08:20 (40 minutes)

Summary

Presenter: SCHUMANN, Marc (University of Bern)
New avenues to search for Dark Matter

Wednesday, 13 April 2016 10:10 (40 minutes)

Summary

Primary author: POSPELOV, Maxim
Presenter: POSPELOV, Maxim
Ultra-high multiplicity electroweak production at Future Colliders - Perturbation theory meltdown and Beyond

Friday, 15 April 2016 08:20 (40 minutes)

Summary

Primary author: KHOZE, Valentin V (Durham University)
Presenter: KHOZE, Valentin V (Durham University)
Towards the Next Standard Model: Experimental Challenges

Friday, 15 April 2016 09:00 (40 minutes)

Summary

Primary author: KIESLING, Christian (Werner-Heisenberg-Institut)

Presenter: KIESLING, Christian (Werner-Heisenberg-Institut)
Summary

Primary author: LIST, Jenny (Deutsches Elektronen-Synchrotron Hamburg and Zeuthen (DE))

Presenter: LIST, Jenny (Deutsches Elektronen-Synchrotron Hamburg and Zeuthen (DE))
Outlook

Friday, 15 April 2016 10:10 (40 minutes)

Summary

Presenter: PLEHN, Tilman (Heidelberg University)
Finding New Physics by understanding Standard Model Processes

Tuesday, 12 April 2016 10:50 (40 minutes)

Summary

Primary author: SCHWANENBERGER, Christian (Deutsches Elektronen-Synchrotron (DE))
Presenter: SCHWANENBERGER, Christian (Deutsches Elektronen-Synchrotron (DE))
DM at 13 TeV and Data Interpretation

Wednesday, 13 April 2016 10:50 (40 minutes)

Summary

Primary author: SALEK, David (Nikhef National institute for subatomic physics (NL))
Presenter: SALEK, David (Nikhef National institute for subatomic physics (NL))
A new class of family non-universal Z’ models

Thursday, 14 April 2016 17:00 (20 minutes)

Recent anomalies in B meson decays observed by the LHCb collaboration have motivated the construction of extensions of the Standard Model with a gauged family non-universal U(1) factor. I will present a large class of family non-universal U(1) gauge models for which flavor changing neutral currents are completely controlled by CKM matrix elements. I will discuss then phenomenological implications of these models, including the possibility to explain the LHCb anomalies.

Summary

Primary author: CELIS, Alejandro (Ludwig Maximilian University of Munich)

Presenter: CELIS, Alejandro (Ludwig Maximilian University of Munich)

Session Classification: THU1
h(125) boson measurements in ATLAS: run-1 legacy and early run-2 results

Monday, 11 April 2016 17:00 (20 minutes)

This talk will summarize the most important properties of the h(125) boson measured at the LHC run-1 by the ATLAS collaboration. It will also present early measurements made with the first data taken at 13 TeV in 2015.

Summary

Primary author: VENTURI, Nicola (University of Toronto (CA))
Presenter: VENTURI, Nicola (University of Toronto (CA))
Session Classification: MON1
Track Classification: Scalar Sector
Searches for Beyond-Standard-Model Higgs bosons in ATLAS

Tuesday, 12 April 2016 17:00 (20 minutes)

This talk will briefly summarize the searches for BSM Higgs Bosons performed at the LHC run-1 by the ATLAS collaboration. Then it will present the searches for high mass Higgses in several channels, made at 13 TeV with the 2015 data.

Summary

Primary author: ZINONOS, Zinonas (Georg-August-Universitaet Goettingen (DE))

Presenter: ZINONOS, Zinonas (Georg-August-Universitaet Goettingen (DE))

Session Classification: TUE1

Track Classification: Scalar Sector
Searches for new physics with fermions or jets at the ATLAS detector in LHC Run 2

Tuesday, 12 April 2016 18:20 (20 minutes)

Many extensions of the Standard Model of particle physics predict heavy new particles and new phenomena, leading to characteristic signatures such as a narrow peak or excess in the tail of distributions. This talk highlights results on searches with fermionic signatures, mainly with high-pT jets and leptons, using 2015 data collected at 13 TeV.

Summary

Primary author: DANDOY, Jeff (University of Chicago (US))
Presenter: DANDOY, Jeff (University of Chicago (US))
Session Classification: TUE2

Track Classification: TeV-scale new physics
Searches for new physics with bosons at the ATLAS detector in LHC Run 2

Tuesday, 12 April 2016 18:40 (20 minutes)

Searches for new physics beyond the Standard Model with bosonic signatures in LHC Run 2 are presented. These include searches for resonant production of two massive bosons (VV, VH and HH) and (non)resonant production of photons in high-mass region.

Summary

Primary author: IORDANIDOU, Kalliopi (Columbia University (US))
Presenter: IORDANIDOU, Kalliopi (Columbia University (US))
Session Classification: TUE2
Track Classification: TeV-scale new physics
Dark matter searches from the ATLAS experiment at LHC Run 2

Wednesday, 13 April 2016 18:40 (20 minutes)

Signatures of large missing transverse momentum recoiling against jets at the LHC provide powerful probe to strongly produced dark matter (DM), complementary to direct and indirect DM detection experiments. This talk presents recent results on dark matter searches with the ATLAS detector in LHC Run 2, focusing on signatures with jets, photons or hadronically decaying bosons.

Summary

Primary author: LEVIN, Dan (University of Michigan (US))
Presenter: LEVIN, Dan (University of Michigan (US))
Session Classification: WED2
Track Classification: Dark Matter
Muon g-2 in Two-Higgs-Doublet Models

Thursday, 14 April 2016 17:20 (20 minutes)

Updating various theoretical and experimental constraints on the four different types of two-Higgs-doublet models (2HDMs), we find that only the lepton-specific" (or type X") 2HDM can explain the present muon g-2 anomaly in the parameter region of large tanβ, a light CP-odd boson, and heavier CP-even and charged bosons which are almost degenerate. The severe constraints on the models come mainly from the consideration of vacuum stability and perturbativity, the electroweak precision data, the b-quark observables like Bs→μμ, the precision measurements of the lepton universality as well as the 125 GeV boson property observed at the LHC. We also discuss the tau-rich signatures at the LHC to probe the allowed parameter space of Type X 2HDM.

Summary

Primary author: CHUN, Eung Jin (Korea Institute for Advanced Study)
Presenter: CHUN, Eung Jin (Korea Institute for Advanced Study)
Session Classification: THU1
Track Classification: Scalar Sector
LHCb measurements at 13 TeV with online data analysis exploiting new trigger and real time alignment and calibration

Thursday, 14 April 2016 18:40 (20 minutes)

By using the very first proton-proton collision data of the LHC Run II, LHCb performed a series of measurements, notably including the cross-sections for quarkonia, beauty and charm productions. The results have been carried out by exploiting a new scheme for the LHCb software trigger, where the algorithm has been split in two stages to allowing for a delayed trigger decision. This enables the alignment and calibration to be performed in real time, hence achieving an optimal reconstruction performance already at the trigger level. In turn this gives the possibility to finalise physics analyses directly from data objects produced by the online reconstruction. Physics results will be discussed with some emphasis on the performance and technical implementation of this novel trigger approach.

Summary

Primary author: STORACI, Barbara (Universitaet Zuerich (CH))
Presenter: STORACI, Barbara (Universitaet Zuerich (CH))
Session Classification: THU2

Track Classification: Flavor Physics
The analysis of the full LHC Run I data set of proton-proton collision events collected with the LHCb detector, corresponding to an integrated luminosity of 3.0 fb⁻¹, is yielding several improved results on exotic hadron candidates, such as \(X(3872)\) and \(Z(4430)^+\), as well as the first observation of two new states compatible with the pentaquark hypothesis. Run II data allow LHCb to further sharpen the experimental picture, opening up the possibility to observe new states. The measurements of the properties of these exotic states and the Run II prospects will be presented, including the determination of their quantum numbers, with model dependent and independent methods.

Summary

Primary author: Mr ALVES JUNIOR, Antonio Augusto (University of Cincinnati (US))

Presenter: Mr ALVES JUNIOR, Antonio Augusto (University of Cincinnati (US))

Session Classification: THU1

Track Classification: Flavor Physics
Low Scale Unification @ LHC

Thursday, 14 April 2016 19:00 (10 minutes)

The Talk is based on

Summary

I will discuss a new class of models where the global baryonic and leptonic symmetries of the Standard Model are promoted to gauge symmetries. Anomaly cancellation requires new fermions called "leptobaryons". I demonstrate how these new degrees of freedom can allow for the possibility of low scale unification, and I will show how the LHC can search for this class of models and draw connections to dark matter searches.

Primary author: OHMER, Sebastian (Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg)

Co-authors: PATEL, Hiren (Max Planck Institute); FILEVIEZ PEREZ, Pavel (MPIK)

Presenter: OHMER, Sebastian (Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg)

Session Classification: Young Scientists Forum 4
Studies of Higgs bosons decaying to fermions with CMS

Monday, 11 April 2016 17:40 (20 minutes)

This talk will review the status of what we know about the observed Higgs boson decaying to fermions, together with the search for Physics beyond the standard model in cases with fermions in the final state. The presentation will cover the couplings from the analyses of final states and initial states like production in association with top quark pairs or single top quarks.

Summary

Primary author: SALERNO, Daniel (Universitaet Zuerich (CH))
Presenter: SALERNO, Daniel (Universitaet Zuerich (CH))
Session Classification: MON1
Track Classification: Scalar Sector
Studies of Higgs bosons decaying to bosons with CMS

This talk will review the status of what we know about the observed Higgs boson decaying to bosons, together with the search for Physics beyond the standard model in cases with bosons in the final state.

Summary

Primary author: SAFONOV, Alexei (Texas A & M University (US))
Presenter: SAFONOV, Alexei (Texas A & M University (US))
Session Classification: MON1
Track Classification: Scalar Sector
Search for New Physics in Z+MET channel at CMS

Tuesday, 12 April 2016 19:00 (10 minutes)

Despite the great understanding of particle interactions in terms of the Standard Model and the recent discovery of the Higgs boson at the LHC, the Standard Model of particle physics can not yet explain various phenomena, such as neutrino masses or the Dark Matter halo in the galaxies. This talk presents new LHC Run II results of a search for New Physics in Z+MET channel, discussing the main experimental features along the uncertainties and finally giving an outlook for the future data in Run II.

Summary

Primary author: BRODSKI, Michael (Rheinisch-Westfälische Tech. Hoch. (DE))
Presenter: BRODSKI, Michael (Rheinisch-Westfälische Tech. Hoch. (DE))
Session Classification: Young Scientists Forum 2
The existence of dark matter, indicated by astronomical observations, is one of the main proofs of physics beyond the standard model. Despite its abundance, dark matter has not been directly observed yet. This talk presents several searches for dark matter production in proton-proton collisions at 7, 8, and 13 TeV at the LHC, performed by the CMS collaboration. They are interpreted in terms of simplified models with different structures and mediators, as well as generic effective theory terms.

Summary

Primary author: JEITLER, Manfred (Austrian Academy of Sciences (AT))
Presenter: JEITLER, Manfred (Austrian Academy of Sciences (AT))
Session Classification: WED2
Track Classification: Dark Matter
The Large Hadron Collider has restarted pp collisions at 13 TeV center of mass energy in June 2015. The CMS experiments have taken data at this new energy which allows greater reach in probing for physics beyond the Standard Model. Several results on searches for physics not associated with supersymmetric extensions of the Standard Model are presented. To give few examples, these extensions predict the existence of new massive resonances, contact interactions with non-resonant phenomena, and long-lived particles.

Summary
New CMS results for H->4l at 13 TeV

Tuesday, 12 April 2016 19:20 (10 minutes)

This talk will present the H->4l analysis with 13 TeV data, and the corresponding results.

Summary

Primary author: KIANI, Muhammad Bilal (Universita e INFN Torino (IT))
Presenter: KIANI, Muhammad Bilal (Universita e INFN Torino (IT))
Session Classification: Young Scientists Forum 2
N-jettiness at NNLO accuracy in electron-positron annihilation

Thursday, 14 April 2016 19:20 (10 minutes)

Vetoing undesired jets is essential in many analyses aiming at searches for new particles. A new jet function, called N-jettiness has been introduced with the purpose of using an inclusive event shape variable for vetoing jets. The logarithms from the phase space restriction, are simple enough to allow their systematic summation to all orders, which allows for providing high precision predictions that combine the fixed-order and resummed results. In this talk we present predictions for two- and three-jettiness in electron-positron annihilation at the next-to-next-to-leading order accuracy. We use the CoLoRFulNNLO subtraction scheme, which is implemented in a computer program that can be used for computing arbitrary jet cross sections at NNLO provided the necessary matrix elements are supplemented.

Summary

Primary author: TULPIÁNT, Zoltán (University of Debrecen)
Presenter: TULPIÁNT, Zoltán (University of Debrecen)
Session Classification: Young Scientists Forum 4
The CMS SUSY program is very active in performing searches with the 13 TeV data including multiple analyses done in regions with leptonic final states. The results of these analyses are used to expand the reach of the searches done by CMS at 8 TeV and additionally to investigate two excesses seen in run I, namely a 2.6 sigma excess seen by CMS and a 3.0 sigma excess seen by ATLAS. These excesses were observed in two separate signal regions both having final states of at least 2 opposite sign same flavor leptons, jets, and MET.

Summary

Primary author: WELKE, Charles Vincent (Univ. of California San Diego (US))
Presenter: WELKE, Charles Vincent (Univ. of California San Diego (US))
Session Classification: TUE1
Track Classification: TeV-scale new physics
Belle II early physics program of bottomonia spectroscopy

The Belle II experiment at the SuperKEKB collider is a major upgrade of KEK B factory facility in Tsukuba, Japan. First beams are planned for early 2016 and first physics data will be recorded in the middle of 2017 during phase 2 commissioning, while the Belle II detector is still missing its vertex detector system. In this talk, we will describe the physics program for this early data, which will focus on bottomonium spectroscopy at different center-of-mass energies, namely at the $\Upsilon(3S)$ and $\Upsilon(6S)$ resonances, amongst other energy points.

Summary

Primary author: SCHWANDA, Christoph (Austrian Academy of Sciences (AT))

Presenter: BELLE II SPEAKER

Track Classification: Flavor Physics
Belle II studies of missing energy decays and searches for dark photon production

Thursday, 14 April 2016 18:20 (20 minutes)

The Belle II experiment at the SuperKEKB collider is a major upgrade of the KEK B factory in Tsukuba, Japan. The machine is designed for an instantaneous luminosity of 8×10^{35} cm$^{-2}$s$^{-1}$ and the experiment is expected to accumulate a data sample of about 50 ab$^{-1}$ in 5 years running. With this amount of data, decays sensitive to physics beyond the Standard Model can be studied with unprecedented precision. One promising set of modes are physics processes with missing energy such as $B \rightarrow \tau\nu$, $B \rightarrow D^{(*)}\tau\nu$ and $B \rightarrow K^{(*)}\nu\bar{\nu}$. The Belle II data also allows searches for the dark photon, the gauge mediator of a hypothetical dark sector, which recently received much attention in the context of dark matter models.

Summary

Primary author: LI GIOI, Luigi (Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut) (D)
Presenter: LI GIOI, Luigi (Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut) (D)
Session Classification: THU2
Track Classification: Flavor Physics
How (not) to use simplified models to search for dark matter at the LHC

Wednesday, 13 April 2016 17:40 (20 minutes)

I will discuss the motivation, the advantages and the problems of using simplified models as a tool to interpret LHC searches for dark matter. I will present a few examples for how this approach can be used to understand the complementarity of different dark matter search strategies. Finally, I will focus on various consistency conditions that should be imposed even on the most simplified models. These conditions can imply the presence of additional new particles and interactions that may change the phenomenology of the model in important ways.

Summary

Primary author: Dr KAHLHOEFER, Felix (DESY)
Presenter: Dr KAHLHOEFER, Felix (DESY)
Session Classification: WED1
Track Classification: Dark Matter
Searches for new physics in jet final states in ATLAS at LHC Run II

Tuesday, 12 April 2016 19:10 (10 minutes)

Significant increase of the center-of-mass energy from 8 to 13 TeV at LHC Run II offers a great discovery potential for new physics at high mass, especially for strongly produced high-mass resources, contact interactions and TeV-gravity phenomena with high-pT jets. This talk presents most recent Run II results from ATLAS on new physics searches in the jet final states.

Summary

Primary author: AMADIO, Brian Thomas (Lawrence Berkeley National Lab. (US))
Presenter: AMADIO, Brian Thomas (Lawrence Berkeley National Lab. (US))
Session Classification: Young Scientists Forum 2
Track Classification: TeV-scale new physics
Constraining composite Higgs models with direct and indirect searches

Tuesday, 12 April 2016 19:30 (10 minutes)

Direct searches for fermion and vector boson resonances, as well as indirect constraints from precision measurements are both important tools to test the predictions of composite Higgs models. A novel numerical technique allows us to take into account many direct and indirect constraints in a single framework. This talk presents results from applying our method to a class of four-dimensional pseudo-Nambu-Goldstone boson Higgs models.

Summary

Primary authors: NIEHOFF, Christoph (Excellence Cluster Universe, Munich); STRAUB, David (Excellence Cluster Universe, Munich); STANGL, Peter (Excellence Cluster Universe, Munich)

Presenter: STANGL, Peter (Excellence Cluster Universe, Munich)

Session Classification: Young Scientists Forum 2

Track Classification: Scalar Sector
I present an extension of the Standard Model where baryon number is a local gauge symmetry that is spontaneously broken. In such a setup, anomaly cancellation requires the introduction of new fermion fields, the lightest of which is an attractive dark matter candidate. Dark matter stability is an automatic consequence of the gauge symmetry, and proton decay never occurs even if baryon number is broken at the low scale. I discuss collider signatures of this model as well as implications for direct and indirect dark matter searches.

Summary

Primary author: DUERR, Michael (DESY)

Presenter: DUERR, Michael (DESY)

Session Classification: WED2

Track Classification: Dark Matter
Seeking Evidence for Dark Matter in Indirect Detection

Wednesday, 13 April 2016 11:30 (40 minutes)

Summary

Presenter: REIMER, Olaf
Minimal Composite Dynamics versus Axion Origin of the Diphoton excess

Monday, 11 April 2016 18:40 (20 minutes)

ATLAS and CMS observe deviations from the expected background in the diphoton invariant mass searches of new resonances around 750 GeV. We show that a simple realization in terms of a new pseudoscalar state can accommodate the observations. The model leads to further footprints that can be soon observed. The new state can be interpreted both as an axion or as a highly natural composite state stemming from minimal models of dynamical electroweak symmetry breaking. We further show how to disentangle the two scenarios.

Summary

Primary author: Dr MOLINARO, Emiliano (CP3-Origins, University of Southern Denmark)
Co-authors: Prof. SANNINO, Francesco (CP3-Origins); Dr VIGNAROLI, Natascia (CP3-Origins)
Presenter: Dr MOLINARO, Emiliano (CP3-Origins, University of Southern Denmark)
Session Classification: MON2
Track Classification: Scalar Sector
Making sense of the LHC diboson and diphoton excesses

Monday, 11 April 2016 19:00 (20 minutes)

Towards the end of Run-1 data taking, an excess in the diboson as well as eejj channel was announced. During the first round of Run-2 data taking, an excess in diphoton channel has been announced. I consider possible explanations of these excesses in two different BSM scenarios. I demonstrate the feasibility of accommodating the diboson and eejj excess in a Left-Right Symmetric Standard Model. For the diphoton excess, I scrutinise a simplified model with scalar resonance coupling to gluons, photons and fermionic dark matter. I illustrate the monojet constraints on such a simplified model scenario and inspect the possibility of reconciling the diphoton excess with dark matter constraints.

Summary

Primary author: KULKARNI, Suchita (Austrian Academy of Sciences (AT))
Presenter: KULKARNI, Suchita (Austrian Academy of Sciences (AT))
Session Classification: MON2
Convexity, gauge-dependence, and tunneling rates

The experimental data point towards the fact that the Standard Model, when assumed to be valid up to very high energies, might be metastable. The stability properties of the theory strongly depend on the Higgs and top masses, so that it becomes important to perform precise, unambiguous computations. Traditionally, these rely on calculating the effective potential and checking for an instability. Once this is known, the lifetime of the Higgs vacuum can be estimated from semiclassical computations of tunneling rates. This approach suffers from two conceptual problems. First, the true effective potential of the theory is known to be concave and real, and thus cannot have false vacua. Second, it is also gauge-dependent, which opens up the question of how to get unambiguous results for decay rates. We will show how these issues can be overcome.

Summary

Primary author: TAMARIT, Carlos (IPPP Durham)
Co-author: Mr PASCENCIA-CONTRERAS, Alexis (Durham IPPP)
Presenter: TAMARIT, Carlos (IPPP Durham)

Track Classification: Scalar Sector
Induced Electroweak Symmetry Breaking and the Composite Twin Higgs

Induced electroweak symmetry breaking is an alternative to the Standard Model mechanism for triggering the Higgs vev which can preserve a Standard-Model-like Higgs decoupled from additional states. In composite Higgs models, this provides a natural mechanism to explain a hierarchy $v \ll f$ between the EWSB scale and the global symmetry breaking scale. In particular, we describe how composite twin Higgs models with minimal tuning can be realized with this mechanism. A unique feature of this model is the presence of both lower and upper bounds on the composite global symmetry breaking scales $\sim 700 \text{ GeV} f \sim 2 \text{ TeV}$.

Summary

Primary author: Dr HOWE, Kiel (Fermi National Accelerator Laboratory)

Presenter: Dr HOWE, Kiel (Fermi National Accelerator Laboratory)

Session Classification: MON2
Angular analysis of $B \to K(\ast)\ell^+\ell^-$ at the Belle experiment

Thursday, 14 April 2016 19:10 (10 minutes)

We present the measurement of angular observables in the decay $B^0 \to K^{\ast 0}(892)\ell^+\ell^-$, where $\ell^+\ell^-$ is either e^+e^- or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to 711 fb$^{-1}$ containing 772×10^6 $B\bar{B}$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy e^+e^- collider KEKB. Four form-factor independent angular observables and the longitudinal polarization of the $K^{\ast 0}(892)$, F_L, and the transverse polarization asymmetry $A(2)$ are extracted in five bins of the invariant mass squared of the lepton system q^2.

We compare our results in the region $q^2 < 8 \text{ GeV}^2/c^4$ with Standard Model predictions and analyze the q^2 region in which the LHCb collaboration reported the so called P_5 anomaly [1, 2].

References

[1] Aaij, R and others Measurement of Form-Factor-Independent Observables in the Decay $B^0 \to K^{\ast 0}\mu^+\mu^-$ 10.1103/PhysRevLett.111.191801

[2] Aaij, Roel and others Angular analysis of the $B^0 \to K^{\ast 0}\mu^+\mu^-$ decay arXiv/1512.04442

Summary

Primary author: WEHLE, Simon (DESY Hamburg)

Presenter: WEHLE, Simon (DESY Hamburg)

Session Classification: Young Scientists Forum 4

Track Classification: Flavor Physics
New signatures of DM at the LHC

Summary

Presenter: KOPP, Joachim (Johannes-Gutenberg-Universitaet Mainz (DE))
GeV-ish Dark Matter in the Sun

The Sun may act as a gravitational well and capture Dark Matter at a constant rate: DM would therefore accrete inside the Sun. In absence of Annihilation (for example, for Asymmetric Dark Matter) the total number of captured DM particles at $t = t_{\text{sun}}$ may have stabilised to a constant number only if capture goes in equilibrium with evaporation, for DM masses below 5-10 GeV, while for higher masses it cannot have reached equilibrium yet. Evaporation thus plays a very important role in determining the total quantity of DM particles trapped in the sun for $m_{\text{DM}} < 10 \text{GeV}$. The presence of GeV-ish Dark Matter would modify energy transport in the Sun, thus is a potential solution of the Solar Abundance problem. However, DM with a constant SI or SD interaction cross section does not modify the energy transport in the right way to solve the Abundance problem, therefore here we consider DM with with momentum and velocity-dependent interactions.

Summary

Primary author: BUSONI, Giorgio
Presenter: BUSONI, Giorgio
Session Classification: WED2
Searches for LFV H/Z → τ e / τ µ decays with the ATLAS detector at 8 TeV

Thursday, 14 April 2016 19:30 (10 minutes)

Direct searches for lepton–flavour–violation (LFV) in decays of the Z and recently discovered Higgs boson with the ATLAS detector at the LHC are presented. Three LFV decays are considered: H → eτ, H → µτ, and Z → µτ. The searches are based on the data sample of proton–proton collisions collected by the ATLAS detector corresponding to an integrated luminosity of 20.3 fb−1 at a center–of–mass energy of √s = 8 TeV.

Summary

Primary author: WEITS, Hartger (NIKHEF (NL))
Presenter: WEITS, Hartger (NIKHEF (NL))
Session Classification: Young Scientists Forum 4
Track Classification: Scalar Sector
New signatures of DM at the LHC

Wednesday, 13 April 2016 17:00 (40 minutes)

Summary

Presenter: KOPP, Joachim (Johannes-Gutenberg-Universitaet Mainz (DE))