

Low beta* running with CT-PPS in 2015 and 2016

Joao Varela, LIP

Pre-meeting LHCC November 18, 2014

CT-PPS concept:

- 1) Proton spectrometer making use of **machine magnets**
- 2) Two tracking stations with **pixel** detectors
- 2) One stations with timing detectors

Project scale:

- Detector cross section ~ 4 cm²
- 144 pixel ROCs
- 200 timing channels
- Total cost ~ 1 MCHF

November 18, 2014

- Physics performance at high luminosity (2.10³⁴ cm⁻² s⁻¹)
 - pileup background, beam background
- Detector operation close to the beam
 - RP and MBP expected performance
 - RF impedance, showers originated in the detectors
- Radiation levels
 - in detectors and front-end electronics
- Timing detectors
 - 10 ps
- Tracking detectors
 - 5.10¹⁵ protons.cm⁻²

Benchmark:

Observation of WW events in e-mu channel requires 100 fb-1

selection 15σ	
WW yields per 1/fb	exclusive WW
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	0.86±0.01
≥ 2 leptons ($p_{\rm T} > 20$ GeV, $\eta < 2.4)$	$0.47 {\pm} 0.01$
opposite sign leptons, "tight" ID	0.33±0.01
dilepton pair $p_{\rm T} > 30~{\rm GeV}$	$0.25 {\pm} 0.01$
protons in both PPS arms (ToF and TRK)	0.055 (0.054)±0.002
no overlapping hits in ToF + vertex matching	0.033 (0.030)±0.002
ToF difference, $\Delta t = (t_1 - t_2)$	0.033 (0.029)±0.002
$N_{\rm tracks} < 10$	0.028 (0.025)±0.002

Yields of dijet events per 1/fb

Pileup=25 :

Selection	Exclusive di	ijets DPE		SD		Inclusive dijets		
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±5	100	$290 imes 10^3$	100	$2.6 imes10^6$	100	$2.4 imes 10^{10}$	100
≥ 2 jets ($p_{ m T}$ >100 GeV, $ \eta < 2.0$)	250±4	38	$25 imes 10^3$	8.7	$190 imes 10^3$	7.6	$3.4 imes 10^8$	1.4
PPS tagging (fiducial)	50±2	8	$15 imes 10^3$	5.1	$12 imes 10^3$	0.5	$0.1 imes 10^8$	0.05
no overlap hits in ToF detectors	43±2	7	$14 imes 10^3$	4.8	$10(18) \times 10^{3}$	0.4	$0.1 imes 10^8$	0.04
ToF difference, Δt	30 (23)±2	4.6	$11 (9) \times 10^3$	3.8	$3 imes 10^3$	0.1	$0.3~(0.6) imes 10^{6}$	1×10^{-3}
$0.70 < [R_{ m jj} = (M_{ m jj}/M_{ m X})] < 1.15$	20 (15)±1	3.1	15 (14)±3	0.01	85 (110)±15	-	$16 (30) \times 10^3$	1×10^{-4}
$\Delta(y_{ m jj}-y_{ m X}) < 0.1$	15 (12)±1	2.4	6 (4)±2	-	3 (11)±3	-	$1.8(3.4) \times 10^3$	-
$N_{ m tracks}$	7.4 (5.8)±0.4	1.1	0.8 (0.6)±0.3	-	1±1	-	$19~(35)\pm1$	-
≥ 2 jets ($p_{\rm T} > 150$ GeV, $ \eta < 2.0)$	3.5 (2.6)±0.2	0.5	0.2 (0.1)±0.1	-	1±1	-	$9(17) \pm 1$	-

\Rightarrow S/B ~ 1/3 (μ =25)

S/B ~ 1/8 (μ =50)

Mass acceptance and resolution

- PPS selects exclusive systems in 300-1700 GeV range (ε>5%)
- At 15σ acceptance larger by a factor of two (wrt 20σ) for lower masses

• The CT-PPS plan includes an **exploratory phase** in 2015-16 followed by a **production phase**.

• Exploratory phase (2015-16)

Show that CT-PPS does not prevent the stable operation of the LHC beams.

- In 2015:
 - Evaluate RPs
 - Demonstrate the timing performance of the Quartic baseline
 - Use TOTEM silicon strip detectors at sustainable radiation
 - Integrate the CT-PPS detectors into the CMS trigger/DAQ system.
- In 2016:
 - Evaluate the MBP option
 - Upgrade the tracking to 3D pixel detectors
 - Upgrade the timing detectors if required/possible

2015

November 18, 2014

- Options considered:
 - Roman Pots (RP) developed by TOTEM
 - Movable Beam Pipe (MBP) pursued by CMS and ATLAS
- RP will be tested in the exploratory phase in 2015.
- The MBP solution is pursued in parallel
 - low RF impedance option
 - aiming at joint project of LHC collaborations and machine
 - possible installation of a prototype for tests in 2016

Roman Pots

- Tests of TOTEM RPs at high luminosity revealed important issues (vacuum, beam dumps, heating).
- Several improvements have been carried by TOTEM (and CMS) in collaboration with BE-ABP.
 - New RF shielding in standard box-shaped RPs
 - New cylindrical RP for timing detectors
 - 10 um thick copper coating
 - New ferrites

Radiation levels in the detector volume were studied using TOTEM data and simulations

Per 100 fb⁻¹:

- Proton flux up to 5.10¹⁵ cm⁻² in the pixel detectors
- 10¹² neq/cm² and 100 Gy in photosensors and readout electronics

To be confirmed with measurements in 2015

Machine induced backgrounds

- Used TOTEM data at μ =9
- Extrapolate to μ =25 and 50

To be confirmed with measurements in 2015

To be installed in October 2015

- Quartic module:
 - 4x5=20 3x3 mm² bar elements
 - 200 µm wire grid separating the bars
 - active area is 12.6 mm x 15.8 mm

November 18, 2014

- Use timing to reject pileup background
- Two scenarios were studied: -10ps and 30ps time resolution

To be validated with measurements in 2015

- Occupancy of the time-of-flight detectors at 15 σ from the beam

To be confirmed with measurements in 2015

occupancy /mm²

occupancy /mm²

2016

November 18, 2014

Tracking baseline

To be installed in March 2016

- 3D silicon sensors
- PSI46dig ROC, with same readout scheme as for Phase I Upgrade of the CMS pixel system
- 6 detector planes per station

Moving Beam Pipe

Interior surface tapered into a conical shape creating a smooth transition to reduce the RF impedance effects.

At 1 mm, **RF impedance** is estimated at **0.05% (trans) and 0.5% (long).**

R&D on solid state detectors

- Motivations:
 - solid state detectors may have fine segmentation reducing the channel occupancy
 - detectors are thin and light, reducing nuclear interactions and allowing a large number of layers N
- Diamond detectors
 - Very fast signals
 - Requires R&D on frontend electronics
 - Requires R&D on radiation and rate effects
- Timing silicon detectors
 - Based on Low-Gain Avalanche Diodes (LGAD)
 - Requires R&D on frontend electronics
 - Requires R&D to improve radiation resistance

• Roman Pot Insertion Commissioning 2015

- RP insertion tests are carried out in end-of-fill studies
- Start with beams separated by 5-6 sigma in IP5 (L=10³⁰⁻³¹)
- Find an optimal set of positions of RPs and collimators.

• Timing Detector Commissioning 2015-16

- Commissioning of the timing detector as a function of luminosity
- End-of-fill studies with separated beams

Data Production Phase >2016

- RP insertion movements will executed by the LHC operator immediately after declaration of stable beams.
- Aim at accumulating up to 100 fb⁻¹ of data before LS2

BACKUP

November 18, 2014

AQGC yields (in fb)

Table 4: Cross section (in fb) for the expected exclusive WW events due to anomalous quartic gauge couplings, for different values of anomalous coupling parameters (a_0^W and a_C^W) after each selection cut (for a timing resolution of 10 ps). In case of different values, numbers in parentheses are for a timing resolution of 30 ps. Only the $e\mu$ final state is considered. Statistical uncertainties are shown.

selection	cross section (fb)			
<	$a_0^W/\Lambda^2 = 5 \cdot 10^{-6} {\rm GeV}^{-2}$	$a_C^W/\Lambda^2 = 5\times 10^{-6} {\rm GeV^{-2}}$		
	$(a_C^W = 0)$	$(a_0^W = 0)$		
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	3.10±0.14	$1.53{\pm}0.07$		
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$2.33 {\pm} 0.08$	$1.00{\pm}0.04$		
opposite sign leptons, "tight" ID	$1.82{\pm}0.08$	$0.78 {\pm} 0.03$		
dilepton pair $p_{\rm T} > 30~{\rm GeV}$	$1.69{\pm}0.07$	$0.68 {\pm} 0.03$		
protons in both PPS arms (ToF and TRK)	0.52 (0.50)±0.04	0.18 (0.17)±0.02		
no overlapping hits in ToF detectors	0.35 (0.32)±0.03	0.12 (0.11)±0.01		
ToF difference, $\Delta t = (t_1 - t_2)$	0.35 (0.32)±0.03	0.12 (0.11)±0.01		
$N_{\rm tracks} < 10$	0.27 (0.24)±0.03	0.11 (0.10)±0.01		

Trigger strategy

- Two-photon physics:
 - the leptonic final states are captured by the CMS lepton triggers
 - The trigger efficiency is expected to be very high given that the lepton thresholds are 30 GeV or below.
 - Final states with hadronic decays of one W or one tau will be accessible using the lepton+jet triggers.

- Hadronic physics
- Large inclusive QCD jet background
- L1 timing trigger selecting events in the tails of the distribution of the collision zvertex

In red distributions of the vertexes separated by at least 1 cm

RPs installed

November 18, 2014